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Abstract 

Background Mammals, globally, are facing population declines. Protecting and breeding threatened popula-
tions inside predator-free havens and translocating them back to the wild is commonly viewed as a solution. These 
approaches can expose predator-naïve animals to predators they have never encountered and as a result, many 
conservation projects have failed due to the predation of individuals that lacked appropriate anti-predator responses. 
Hence, robust ways to measure anti-predator responses are urgently needed to help identify naïve populations at risk, 
to select appropriate animals for translocation, and to monitor managed populations for changes in anti-predator 
traits. Here, we undertake a systematic review that collates existing behavioural assays of anti-predator responses and 
identifies assay types and predator cues that provoke the greatest behavioural responses.

Methods We retrieved articles from academic bibliographic databases and grey literature sources (such as gov-
ernment and conservation management reports), using a Boolean search string. Each article was screened against 
eligibility criteria determined using the PICO (Population–Intervention–Comparator–Outcome) framework. Using 
data extracted from each article, we mapped all known behavioural assays for quantifying anti-predator responses 
in mammals and examined the context in which each assay has been implemented (e.g., species tested, predator 
cue characteristics). Finally, with mixed effects modelling, we determined which of these assays and predator cue 
types elicit the greatest behavioural responses based on standardised difference in response between treatment and 
control groups.

Review findings We reviewed 5168 articles, 211 of which were eligible, constituting 1016 studies on 126 mammal 
species, a quarter of which are threatened by invasive species. We identified six major types of behavioural assays: 
behavioural focals, capture probability, feeding station, flight initiation distance, giving-up density, and stimulus 
presentations. Across studies, there were five primary behaviours measured: activity, escape, exploration, foraging, and 
vigilance. These behaviours yielded similar effect sizes across studies. With regard to study design, however, studies 
that used natural olfactory cues tended to report larger effect sizes than those that used artificial cues. Effect sizes 
were larger in studies that analysed sexes individually, rather than combining males and females. Studies that used 
‘blank’ control treatments (the absence of a stimulus) rather than a treatment with a control stimulus had higher effect 
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sizes. Although many studies involved repeat measures of known individuals, only 15.4% of these used their data to 
calculate measures of individual repeatability.

Conclusions Our review highlights important aspects of experimental design and reporting that should be consid-
ered. Where possible, studies of anti-predator behaviour should use appropriate control treatments, analyse males 
and females separately, and choose organic predator cues. Studies should also look to report the individual repeat-
ability of behavioural traits, and to correctly identify measures of uncertainty (error bars). The review highlights robust 
methodology, reveals promising techniques on which to focus future assay development, and collates relevant 
information for conservation managers.

Keywords Anti-predator behaviour, Behavioural adaptation, Behavioural assay, Effect size, Evidence synthesis, 
Predator avoidance, Predator cue, Prey naïveté

Background
The need to quantify anti‑predator responses
Mammal populations are experiencing alarming rates 
of extinction [1–3] due to anthropogenic impacts such 
as habitat loss and fragmentation, illegal hunting, and 
exotic predators [4]. Redressing this loss of biodiversity 
requires well-informed and well-tested management 
interventions. Many of these interventions will need to 
be underpinned by a mechanistic understanding of spe-
cies’ behaviour.

How an animal responds to predators has substantial 
bearing on its ability to survive. Predation, particularly 
from introduced predators, has been a major driver of 
mammal declines and extinctions around the world [5–
9]. This is especially true for individuals and populations 
that have had limited or no exposure to predators, such 
as many island populations [10, 11], individuals raised in 
captivity, and those moved to an environment with novel 
predators [12–14]. Improving our understanding of how 
animals behave in response to predatory stimuli should 
provide crucial insights for their conservation manage-
ment and can improve our ability to retain antipredator 
traits in managed populations [12, 15, 16]. An animal’s 
response to predators may be either behavioural (e.g. 
spatial and temporal avoidance [17, 18], avoiding detec-
tion [19] and evasion [20]), or chemical [21] and physical 
defences [22]. Behavioural responses are likely to be more 
plastic and responsive at shorter time frames than physi-
cal responses and are therefore particularly important 
when considering the acute impacts of predators on the 
persistence of predator-naïve species. Such behavioural 
responses may be closely linked to animal personalities 
(or behavioural syndromes)—repeatable inter-individ-
ual differences in a set of behaviours [23], traditionally 
assessed along a bold-shy continuum [24, 25]. Personal-
ity is important to consider in the context of ecology as 
it contributes to inter- and intra-individual variations in 
behaviour, influencing both the ability of an individual 

to respond to environmental changes, as well as the effi-
ciency with which natural selection can act [23].

Animal behaviour can be influenced by human inter-
actions. For example, the coexistence of humans and 
wildlife in urban areas often selects for boldness in indi-
viduals [24, 25]. Conservation interventions can also 
indirectly affect behavioural responses in target species. 
Common strategies employed to prevent faunal extinc-
tions include captive breeding [26], translocations (the 
deliberate movement of animals from one population 
or site for release in another [27]), and establishment 
of populations in predator-free havens (areas isolated 
from predators through a geographical or physical bar-
rier, such as islands or fenced enclosures [28–30]). Such 
approaches have secured a number of populations of 
mammals, including African elephants [31, 32], Euro-
pean lynx [33], elk [34], giant pandas [35], and Tasmanian 
devils [36]. Despite their initial successes, these strategies 
are at risk of longer-term failure if they select for bold, 
predator-naïve behaviours. Such haven-adapted popula-
tions would be particularly vulnerable to acute popula-
tion collapses from predator incursions and would face 
substantial challenges when reintroduced to areas con-
taining predators.

Australia provides a compelling case study to illustrate 
the challenges of mammal conservation. More than one 
third of modern mammal extinctions have occurred in 
Australia, largely due to the introduction of feral cats 
and foxes [37]. In response, havens free of introduced 
predators are a key component of conserving much of 
the remaining mammal fauna [29, 30, 38]. Australia’s 
current network of havens provides habitats for at least 
32 mammal species, and has secured at least 188 popu-
lations and sub-populations [29]. Evidence is emerging, 
however, that in the absence of feral and/or native preda-
tors, havened populations no longer exhibit anti-predator 
behaviours [13, 39–44]. This renders individuals in these 
populations fundamentally unfit for reintroduction back 
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into where predators still persist. Because the success of 
many translocations has ultimately been compromised by 
predation [38, 45, 46], the future of mammal conserva-
tion in Australia, and more broadly, hinges on developing 
methods and strategies that can quantify and conserve 
antipredator behaviours in havened and translocated 
populations [42].

To undertake an adaptive management approach, 
we require monitoring and evaluation of anti-predator 
responses in mammalian species. Despite awareness that 
behavioural traits such as boldness or shyness can influ-
ence conservation outcomes, measuring such traits is 
rarely incorporated into monitoring and management 
[16, 47]. Anti-predator responses have only recently 
been identified as a potential barrier to the success of 
conservation projects [13, 40–42], and while an array 
of academic literature exists that details various meth-
ods for measuring these behaviours [15, 41, 42, 48–53], 
accessing the methodologies, comparing them for rigor, 
and identifying the most appropriate measure is labour 
intensive. Stakeholders, such as conservation and popula-
tion managers, are likely to be seeking this information, 
but are also likely to be limited by the time and resources 
necessary to find it. Ultimately, we currently lack a robust 
framework for the universal monitoring and evaluation of 
anti-predator traits [54]. The first step to developing such 
a framework is to understand which behavioural assays 
have been used, which are the most effective (capture or 
provoke the greatest behavioural response), and whether 
the type of predator cue is important. In the absence of 
this crucial information, the adoption of inappropriate 
and poorly-performing behavioural metrics may prevail.

Identification and engagement of stakeholders
In addition to the review team, stakeholders relevant to 
this review have been identified as those who research 
or manage animal populations, for example, members of 
species recovery teams (Fig.  1). To ensure the informa-
tion collected throughout this review is tailored toward 
the target audience, and thus of the most relevance for 
application, a variety of stakeholders from each of the 
categories in Fig.  1 were consulted during the develop-
ment of the protocol. We invited 27 stakeholders to com-
ment on the draft protocol, and after receiving 16 replies 
(ten from Australia and six from other countries), we 
incorporated their suggestions.

Objective of the review
We present all available behavioural assays for measur-
ing or quantifying anti-predator responses in mammals 
by collating information into an accessible format. Spe-
cifically, we: (1) reveal different methods, (2) describe 
the context within which each method was conducted, 

and (3) highlight methods or aspects that warrant fur-
ther examination, thus guiding the future develop-
ment of behavioural assays. Further, using a modelling 
approach, we then identify which types of behavioural 
assays and predator cues elicit the greatest responses in 
mammals (difference in effect size between the treat-
ment and control conditions). A formal evidence syn-
thesis is required to explore all potential methods and 
to avoid bias toward those published in academic jour-
nals, because much information may come from gov-
ernmental reports and species recovery plans [16, 55]. 
The final review acts as a guide: it highlights existing 
methodologies and provides additional information to 
assess their relevance, allowing stakeholders to easily 
select the most appropriate and effective behavioural 
assay for their purpose.

Fig. 1 End-user stakeholder groups (right-hand boxes) consulted 
when designing a systematic review of methods that quantify 
anti-predator behaviour in mammals. Arrows indicate each groups’ 
broad interests in the various steps (left-hand boxes) required for 
improving conservation outcomes. Robust behavioural assays 
facilitate the accurate discrimination of individuals or populations 
based on certain desirable behavioural attributes. This information 
can then be used to directly inform conservation management, 
whereby effective conservation management strategies ultimately 
lead to improved conservation outcomes
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Using the PICO (Population–Intervention–Compara-
tor–Outcome) framework [56], we have broken our 
review into two questions that will define our search 
scope. We will first systematically map all known meth-
odologies answering a primary question: what behav-
ioural assays have been used to quantify anti-predator 
responses in mammals? The elements of this question 
are:

Population   Free-living, wild-caught, or captive 
mammals (global)

Intervention  (i) a behavioural assay that quantifies 
anti-predator responses to predator 
exposure

  (ii) a behavioural assay that quantifies anti-
predator responses to predator cues

Articles that conform to both the Population and 
Intervention criteria will be used to answer this pri-
mary question. A secondary question we seek to 
answer will be assessed quantitatively by modelling the 
data collected from each article, asking: which assay-
types and predator cues elicit the greatest behavioural 
responses? This question utilises the same Population 
and Intervention criteria as the primary question but 
requires further assessment using Comparator and 
Outcome criteria to select studies for the systematic 
review. The additional elements of the secondary ques-
tion are:

Comparator  Comparison between levels of preda-
tor exposure (e.g., before versus after 
exposure, exposure versus no exposure) 
or comparison between exposure to a 
predator cue versus a control.

Outcome   Difference in the behavioural response 
between the treatment (e.g., predator/
predator cue exposure) and control con-
ditions. Metrics of responses will dif-
fer between studies depending on assay 
type and will be compared using stand-
ardised effect sizes.

Articles that involve at least one Comparator ele-
ment can then additionally be considered for the system-
atic review to investigate which Intervention elements 
(behavioural assays and predator cues) produce the 
greatest Outcome. The PICO elements of our two ques-
tions are illustrated in Fig. 2.

Methods
This systematic review follows a pre-defined protocol 
[57] that conforms to the CEE guidelines [56] and ROSES 
reporting standards (Additional file 1, ROSES checklist).

Deviations from the protocol
We were unable to use the entire search string to 
search EThOS: UK Theses and Dissertations, instead we 
searched using the search terms “anti-predator” and 
“antipredator”. The website https:// openg rey. eu could 
not be searched as it has been removed. One eligibility 
criterion was added for the screening process; the arti-
cle must contain primary results (e.g. a meta-analysis 
or book chapter that presents and cites findings from 
another study will not be included) as articles that pre-
sent results from other studies do not contain enough 
methodological detail for this review, and we are con-
fident that relevant original studies will be captured 
by our search strategy. We also clarified that to sat-
isfy the population criteria, individuals must not have 
been physically or physiologically altered (e.g., had any 
substance administered or limb removed) as this may 
affect their response and bias our quantitative compo-
nent. We intended to use the CEE Critical Appraisal 

Fig. 2 Elements of target questions illustrated using the PICO 
framework

https://opengrey.eu
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tool to evaluate potential biases from our studies, how-
ever, found that many of the questions lacked relevance 
for studies of animal populations (as they were directed 
toward human subjects). We refined the criteria to bet-
ter suit our review (Additional file 3).

Search for articles
Search terms and strings
To develop a search strategy, an initial scoping exercise 
was conducted using a test-list of 10 benchmark arti-
cles that assess anti-predator responses (Additional 
file  2), each selected by the review team as they cover 
a variety of different assays and predator scenarios. The 
titles, key words, and abstracts of each scoping article 
were mined, both manually, and using word clouds (R 
package wordcloud [58]; in the R environment [59]), 
to determine the most appropriate search terms [60]. 
An initial search string was then created using Boolean 
operators to combine the relevant terms based on the 
review team’s knowledge, and the terms identified from 
the scoping articles. Trial searches were conducted 
using the Web of Science: Core Collection. We system-
atically removed terms that appeared to broaden the 
search outside the scope of the review. To ensure the 
proposed strategy adequately returned relevant lit-
erature, the search output was scanned for relevant 
articles and each of the scoping benchmark articles. 
Unreturned articles were then closely inspected, and 
the search strategy was adjusted until it retrieved all 
10 benchmark articles [56]. The comprehensiveness 
of the search strategy was then tested using a list of 5 
independent articles (Additional file  2), all of which 
were retrieved by the final search strategy. The final 
search string (modified for each specific database lan-
guage) was: TS = ((("antipredator response$" OR "anti-
predator response$" OR "antipredator behavio$r" OR 
"anti-predator behavio$r" OR "escape behavio$r" OR 
"giving$up density" OR "FID" OR "GUD" OR "flight ini-
tiation distance") AND ("predator exposure" OR "prey 
naïveté" OR "naïve prey" OR "los$" OR "trait" OR "pred-
ator avoid*")) OR (("predator recognition" OR "predator 
exposure" OR "predation risk" OR "introduced preda-
tor$" OR "novel predator$" OR "predator odour") AND 
("naïve prey" OR "prey naïveté" or "escape behavio$r" 
OR "giving$up density" OR "flight initiation distance" 
OR "FID" OR "GUD" OR "predator odour")) OR (("anti-
predator response$" OR "anti-predator response$" OR 
"antipredator behavio$r"OR "anti-predator behavio$r" 
OR "escape behavio$r") AND ("predator recognition" 
OR "predator exposure" OR "introduced predator$" OR 
"novel predator$")))

Search limitations
All searches were conducted in English which may 
exclude studies from regions that do not predominantly 
speak English. Searches were conducted between 7th 
and 21st December 2021.

Search sources
Academic literature
Using the above search string, we searched the follow-
ing bibliographic databases from which to collect peer-
reviewed journal articles: Web of Science (Core Collection, 
BIOSIS Citation Index, Zoological Record, CAB abstracts) 
and Scopus.

Grey literature
To reduce bias toward published literature, we also 
searched a variety of grey literature sources [54, 55]. We 
collated theses and dissertations from two bibliographic 
databases specific to grey literature: Proquest Disser-
tation (using the above search string) and EThOS: UK 
Theses and Dissertations (using the search terms “anti-
predator” and “antipredator”). Conference proceed-
ings were searched in the Web of Science database using 
the predetermined search string. The website trove.nla.
gov.au was also searched, using the search terms “anti-
predator” and “antipredator”. Specialist documents were 
searched for from within the following repositories, using 
the search terms “anti-predator” and “antipredator”: 
IUCN general publications (https:// porta ls. iucn. org/ libra 
ry/ dir/ publi catio ns- list); IUCN Conservation Planning 
Specialist Group (http:// www. cpsg. org/ docum ent- repos 
itory); Conservation Evidence (http:// www. Conse rvati 
onEvi dence. com); WWF (https:// www. world wildl ife. org/ 
publi catio ns). A web-based search engine, Google (www. 
google. com), was used to supplement our search results. 
The first 50 links returned using each combination of the 
search terms “anti-predator/antipredator” and “behav-
iour/behavior”, were inspected and added to the article 
pool if not yet identified [61].

Article screening and study eligibility criteria
Screening process
Articles were uploaded into CADIMA software [62], 
where duplicates were removed and article screening 
took place. To remove bias, two screeners independently 
reviewed articles at title and abstract level simultane-
ously, followed by the full text versions, to decide which 
met the inclusion criteria. Each screener assessed an 
overlap of 50 articles at both the title/abstract stage, 
and at the full text stage (1.5% and 9.5% respectively). 

https://portals.iucn.org/library/dir/publications-list
https://portals.iucn.org/library/dir/publications-list
http://www.cpsg.org/document-repository
http://www.cpsg.org/document-repository
http://www.ConservationEvidence.com
http://www.ConservationEvidence.com
https://www.worldwildlife.org/publications
https://www.worldwildlife.org/publications
http://www.google.com
http://www.google.com
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Reliability between screeners was assessed using Kappa 
calculations and were deemed reliable (inter-screener 
reliability scores of 1 and 0.8 at title/abstract and full text 
stages respectively). In instances where screeners did not 
agree on the inclusion/exclusion of an article, they dis-
cussed, and consulted a third member of the review team 
if a decision could not be reached. If reviewers found 
themselves assessing their own work, a third impartial 
member of the review team supervised the assessment 
of any conflicting articles. A full list of excluded articles, 
detailing reasoning for their exclusion can be found in 
Additional file 4.

Eligibility criteria
Each article was screened against eligibility criteria based 
on the PICO framework as outlined in Table 1.

Articles that satisfied the Population and Interven-
tion eligibility criteria were used to pursue the primary 
question, and were then additionally assessed against the 
Comparator and Outcome eligibility criteria for inclu-
sion in the secondary quantitative component where they 
addressed the effectiveness of the Intervention elements; 
either assay types or predator cue types. All articles con-
sidered for this analysis must have incorporated at least 
one of the Comparator elements and all of the Outcome 
elements listed in Table 1.

Study validity assessment
To assess the risk of bias in each study, we evaluated the 
risk of biases from 6 criteria as defined in the CEE Criti-
cal Appraisal tool v.0.3 [64]: confounding biases; post-
intervention/exposure selection biases; misclassified 
comparison biases; detection biases; outcome reporting 

biases; and outcome assessment biases. Factors identified 
by the review team and stakeholders that may confound 
the effectiveness of a behavioural assay or predator cue 
were scored during the meta-data extraction (e.g. species, 
sex, population origin, control type).

Using our Critical Appraisal checklist (adapted from 
the CEE Critical Appraisal tool; Additional file  3), we 
assessed the risk of bias for each of the aforementioned 
criteria (low, medium or high) and rated the overall risk 
of bias (low, medium or high) for each study. There were 
many cases where multiple studies (from the same arti-
cle) were part of one experiment, for example, where 
each study considered a different treatment, or a differ-
ent behaviour measured. In these instances, one check-
list was completed, unless the review team were unable 
to evaluate them as one because different studies posed 
different risks of bias. In this case, and in cases where 
studies were from the same article but from a different 
experiment, independent checklists were completed. To 
evaluate the consistency of critical appraisal decisions, 
two members of the review team assessed an overlap 
of 20 studies (9.5%) and reached the same conclusion 
for each of them. In the statistical analysis, studies were 
weighted according to their risk of bias as described 
below (data synthesis).

Data coding and extraction strategy
The variables detailed in Table 2 were extracted or scored 
from included studies where possible.

For the quantitative component, we extracted the mean 
response of each treatment, its corresponding variance 
(standard deviation, standard error or confidence inter-
vals), and the sample size for each treatment. Where 

Table 1 Study eligibility criteria based on PICO (Population–Intervention–Comparator–Outcome) framework

Population Eligible subjects include any population of non-human terrestrial mammals (free-living, wild-caught, captive, or domesticated) from 
around the world. We do not include studies that have used simulated populations. Individuals must not have been physically or physi-
ologically altered

Intervention Eligible studies use behavioural assays to quantify anti-predator behaviour in response to:
(i) Exposure to live true predators
(ii) Exposure to predator-related cues, or events that represent a proxy for predatory situations (studies with humans as the predator can 
be included)

Comparator The study must contain at least one of the following comparisons [12]:
(i) A before/after comparison (BA) that investigates how anti-predator responses change before and after exposure to predators
(ii) A control/intervention comparison (CI) that compares anti-predator responses between a group exposed to the predator/s and a 
designated control group not exposed
(iii) A control/intervention comparison (CI) that compares anti-predator responses of individuals exposed to both a predator cue and a 
control treatment
(iv) A before/after/control/intervention comparison (BACI) combining the above components

Outcome Metrics for behavioural responses vary between assays and are be compared using standardised effect sizes (the difference in mean 
behavioural responses between the treatment and control conditions). To calculate standardized effect sizes (using Hedges’ g [63]), arti-
cles must provide (i) the mean response to each treatment, (ii) its corresponding variance (standard deviation, standard error or variance), 
and (iii) the sample size for each treatment

Other The article must contain primary results (e.g. a meta-analysis or book chapter that presents and cites findings from another study will not 
be included)
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articles alternatively present the median, minimum, max-
imum and interquartile range, we extracted these values, 
and used them to estimate the mean and standard error 
(please see below). In articles where such values were 
presented graphically, we measured the values directly 
from the figures (with the axes as scale bars) using the 
software Image J [65]. For a worked through example 
of effect size extraction using Image J, please see Addi-
tion file 6. Data were recorded using a customised data 
sheet (Additional file  5). To ensure consistency in data 
extraction, 20 studies (9.5%) were cross checked by two 
review-team members. Both members came to the same 
conclusions for all data extracted, and a pairwise t-test 

(in the R environment [59]) revealed no difference in 
the values extracted using Image J between scorers. We 
contacted authors from 17 articles to follow up missing 
information; we received four replies, and excluded the 
remaining 13 articles. Additional information regard-
ing the species tested (threat status, threats faced, dis-
tribution) were collected from the IUCN Red List [66]. 
Extracted data can be found in Additional file 6.

Potential effect modifiers/reasons for heterogeneity
The list of factors to be investigated by the review 
were compiled using the expertise of the review team, 
incorporating suggestions from stakeholders. We may 

Table 2 Variables extracted from included studies

Category Variable Scoring options

Species Common name E.g. Cheetah

Latin name E.g. Acinonyx jubatus

IUCN conservation status E.g. Endangered

IUCN threats to species E.g. Invasive non-native/alien species/diseases

Sex Male, female, both

Population Source Captive, havened, wild

Size Small < 5 kg, medium 5–20 kg, or large > 20 kg

Assay Assay type E.g. flight initiation distance, trap behaviour, giving-up density

Behaviour measured E.g. avoidance, docility, exploratory behaviour, fear

Type of predator exposure Comparison between populations with vary-
ing exposure to predators

Yes/no

Use of predator cue Yes/no

Direct or contextual

Acoustic, visual, or olfactory A, V, O, AV, AO, VO, or AVO

Type of predator E.g. terrestrial or aerial

Cue properties Type of cue E.g. faeces, urine, call, taxidermied model

Did the cue move? Yes/no

Size of cue Small < 5 kg, medium 5–20 kg, large > 20 kg

Cue material Organic or synthetic

Robustness of methods Sample size • Number of individuals
• Number of populations (treatment groups)
• Number of repeat measures per individual
• Number of repeat measures per population

Measure of repeatability • Within individuals
• Within populations

What was the control Blank, stimulus, or population

If/how the methods were validated E.g. fate of individuals, success criteria

Effect size (difference in means between treat-
ment and control group)

• Mean response (and standard deviation) of treatment group
• Sample size of treatment group
• Mean response (and standard deviation) of control group
• Sample size of control group
-OR-
• Median of treatment group
• Minimum and maximum of treatment group
• Interquartile range of treatment group
• Median of control group
• Minimum and maximum of control group
• Interquartile range of control group
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have  unintentionally excluded some useful data by only 
searching articles written in the English language. There 
may be a bias in the types of animals for which measures 
have been developed, for example, threatened or char-
ismatic species. The type of predator cue used may sub-
stantially affect the outcome, as less effective cues may 
not be representative of an individuals’ response to a true 
predation event [64–67]. For the most robust quantifica-
tion of behaviour, methodology should use repeat meas-
ures, incorporate measures of repeatability, and validate 
the assays, for example, by quantifying the fitness out-
comes of various behavioural responses [68, 69]. With 
such a systematic review, we hope to highlight where 
biases may be occurring, and reveal areas where more 
robust methodology is needed to guide the development 
of behavioural assays.

Data synthesis and presentation
The results from this systematic review are presented 
both as a narrative synthesis to address the primary ques-
tion and as a quantitative analysis to address the second-
ary question [56]. To answer the primary question, what 
behavioural assays have been used to quantify anti-pred-
ator responses in mammals, we collated two tables of 
findings, and discuss specific examples and descriptive 
statistics in the text.

The secondary question, which assay-types and preda-
tor cues elicit the greatest behavioural response, has been 
answered via extracting meta-data. To make studies com-
parable, we converted all observations of effect sizes and 
their variance/error margins to means and standard devi-
ation. If articles only provided standard errors these were 
transformed into standard deviation using the following 
equation:

where SE is standard error, and n is sample size. If arti-
cles only provided 95% confidence intervals, normal dis-
tribution was assumed, and these were transformed into 
standard deviation using the following equation:

where n is sample size, and UL and LL are the upper 
and lower confidence limits respectively. There was one 
instance where an article provided mean deviation. From 
these values we estimated standard deviation by multi-
plying the values by a factor of 

√
2

π
 . There was one article 

that provided the mean and the range. From these val-
ues, standard deviation was estimated by quartering the 
range ( 1

4
(Max −Min) ). If articles presented their results 

as box plots (providing the median, interquartile range, 

SD = SE ∗
√
n

SD =
√
n

(

UL− LL

3.92

)

and minimum/maximum), we used the following equa-
tion [67] to estimate the mean:

where a is the minimum, q1 and q3 are the first and 
third quartiles respectively, m is the median, and b is the 
maximum. We estimated standard deviation following a 
method devised by Wan and colleagues [68]:

Both ε and η are functions of n as defined in [68] (Addi-
tional file 7). Using the treatment means, standard devia-
tions and sample sizes extracted and estimated from 
each study, we then calculated a standardized measure of 
effect size for differences between means using Hedges’ 
g [63]:

where µt is the mean of the treatment group, µc is the 
mean of the control group and Sp is the pooled standard 
deviation. The formula for pooled standard deviation is:

where nt and st are the number of observations and 
standard deviation for the treatment group respectively, 
and nc and sc are the number of observations and stand-
ard deviation for the control group respectively. Hedges’ 
g was chosen over other effect size measures such as 
Cohen’s d, as it is suited to a range of sample sizes and 
because it facilitates comparisons across studies by 
weighting each measure based on the number of obser-
vations [69]. As we were interested in the magnitude of 
difference in effect sizes between the treatment and con-
trol conditions, rather than the direction of difference, we 
used absolute values of Hedges’ g in our analysis. Finally, 
to evaluate potential publication bias, we created and 
visually inspected a funnel plot (using the metafor pack-
age [70] in R [59]) which suggests an approximately sym-
metrical distribution of studies (Additional file 8).

We built two mixed effects models using R [59] to iden-
tify which predator cue types and behavioural assay types 
elicit the greatest difference in effect size (Hedges’ g), 
while controlling for potential confounding factors where 
possible. We included each article’s unique identifier as 
a random effect in both models to account for the non-
independence of multiple effect sizes from each article. 
We also included genus as a random effect to account for 

µ ≈
a+ 2q1 + 2m+ 2q3 + b

8

S ≈
1

2

(

b− a

ε(n)
+

q3 − q1

η(n)

)

.

g =
µt−µc

Sp

Sp =

√

(nt − 1)s2t + (nc − 1)s2c
(nt − 1)+ (nc − 1)
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potential bias towards taxa more heavily represented in 
the literature (e.g., Rattus). Studies were weighted based 
on their risk of bias determined through critical appraisal 
whereby studies with a low, moderate, or high risk were 
weighted with a value of 3, 2, or 1 respectively.

Model selection was used to determine factors that 
most influenced the response variables of each model. 
To select the best model, we used likelihood ratio tests 
to test the relative weight of each variable by comparing 
a model with that parameter removed to the full model 
[71]. We also compared AIC values of candidate models 
to ensure the final models were the most parsimonious 
(∆AIC < 2) [72]. As we did not have observations for all 
combinations of categories, we were unable to test for the 
following biologically relevant interaction effects from 
the assay type model: assay type and species type; behav-
iour measured and species size; assay type and predator 
type (aerial/terrestrial); source population (captive, wild, 
haven) and predator source (native, novel, historic, intro-
duced); behaviour measured and sex. From the preda-
tor cue type model, we were unable to test for: cue type 
(direct/indirect) and cue structure (synthetic/organic); 
cue type and source population. In the predator cue type 
model, the cue properties variable (the appropriate com-
bination of visual, auditory and olfactory) showed high 
collinearity and was excluded from the analysis.

Review findings
Review descriptive statistics
Our search returned 5228 articles (18 theses + 5210 peer 
reviewed articles; totalling 3629 after duplicates had been 
removed) that had publication dates between 1984 and 
2022. Of these, 211 articles  passed the screening pro-
cess, resulting in 1016 studies (Fig. 3). Full lists of search 
results by source, eligible studies, and reasons for exclu-
sion, are available in Additional file  9. Critical appraisal 
determined that all studies posed a low risk of bias. Criti-
cal appraisal checklists for each study can be found in 
CADIMA (please see data availability section).

Species assayed
We identified 126 species for whom anti-predator 
responses have been investigated. Australia contained 
the most assayed species (27 species), followed closely by 
species from North American and Asian continents (18 
and 22 species respectively). Species from South Amer-
ica and Africa were underrepresented in the literature 
(Fig. 4a). Excluding domesticated species, the threat sta-
tus of all 126 species has been assessed by the Interna-
tional Union for the Conservation of Nature (the IUCN). 
Most species were listed as Least Concern, with only 
20% of assayed species listed as threatened (Vulnerable, 
Endangered, Critically Endangered), or Extinct in the 

Wild; Fig. 4b. According to the species’ Red List profiles, 
one quarter are threatened by “Invasive non-native/alien 
species” (Fig. 4c).

Range of behavioural assays
From the literature, we identified six major types of 
behavioural assays: stimulus presentations (71.3% of stud-
ies), feeding station (14.6%), behavioural focals (3.7%), 
giving-up density (7.4%), capture probability (2.0%), and 
flight initiation distance (1.0%). These assays measured 
five primary behaviours: activity, escape, exploration, for-
aging and vigilance (Table 3). Additional behaviours that 
did not fall into these categories, such as aggression or 
grooming, were rarely measured, and were grouped into 
an “other” category.

Behavioural focals were commonly used to compare 
anti-predator responses in populations with varying 
predator exposure or naïveté, without the use of a preda-
tor stimulus. Ross and colleagues [5], for example, used 
this method to compare anti-predator responses between 
two populations of greater bilbies (Macrotis lagotis): a 
naïve havened population and a population exposed to 
cats (an introduced meso-predator). This method facili-
tates observation of general behaviours, such as foraging 
and vigilance trade-offs, and can be used to discern vary-
ing personality phenotypes (e.g., bold or shy individuals) 
and to evaluate neophobia (aversion to novelty [285]).

3629 records a�er 
duplicate removal

5168 records iden�fied 
through database 

searching

540 full-text ar�cles 
assessed for eligibility

(Q1 ar�cles n=368)

1016 studies included

211 full-text ar�cles 
included

(Q2 ar�cles n=211)

3629 records screened 
at �tle/abstract level 3089 records excluded

329 full-text ar�cles 
excluded; 
unable to sa�sfy the 
Popula�on (86), Interven�on 
(86), Comparator (195), or 
Outcome (114) criteria, for not 
presen�ng primary results 
(35), as the full text was not 
available (6) or not assessable 
(2), or a duplicate (12).

60 records iden�fied 
from other sources

Fig. 3 Flow diagram detailing articles and studies identified and 
excluded at each step of the search process
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Capture probability, which represents an animal’s 
exploratory behaviour, is an innovative way to assay 
behaviour using live animal traps. This method was pre-
dominantly used to assay behaviour in small rodents. For 
example, both Russell and colleagues [83] and Dickman 
and colleagues [86] evaluated anti-predator responses in 
rodents, including Australian bush rats (Rattus fuscipes), 
wood mice (Apodemus sylvaticus) and shrews (Sorex ara-
neus), by setting an array of scented traps—treated with 
predator odours or not—giving the focal species a choice 
of trap to explore. This particular assay can discern 
whether individuals recognise the scent of predators, and 
behave differently when there is immediate evidence of 
predators.

Feeding stations can be used to reveal how animals for-
age; a behaviour that commonly trades off against anti-
predator behaviours such as vigilance. Feeding may make 
an individual vulnerable, and how they allocate their time 

to vigilance versus other behaviours can reveal the risk 
they perceive. For example, Saxon-Mills and colleagues 
[51] compared the foraging, exploratory and activity 
behaviours of burrowing bettongs (Bettongia lesueur) 
from both naïve and cat exposed populations at predator 
scented food trays. Such methodology provides insight 
into an animal’s priorities, and can highlight contexts 
of interest—for example, an animal ignoring predator 
cues in the pursuit of food may be experiencing resource 
limitation.

Flight initiation distances are a particularly cost-effec-
tive method for quantifying anti-predator responses 
because they can be conducted with very little, or com-
pletely without specialized equipment. Cappa and col-
leagues [119], for example, used this method to identify 
the predation risk perceived by guanacos (Lama guani-
coe) to the presence of human poachers.

Fig. 4 Species for whom anti-predator behaviours have been assayed: a Number of species assayed per country that they are found in, b species 
extinction risk category according to the IUCN Red List (DD: Data Deficient, LC: Least Concern, NT: Near Threatened, VU: Vulnerable, EN: Endangered, 
CR: Critically Endangered, EW: Extinct in the Wild), and c proportion of species threatened by ‘Invasive or non/native species’
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Giving-up densities (GUD) are an effective tool for 
quantifying perceived risk. General foraging patterns 
and perceived risk between populations can be com-
pared, or else can be paired with a predator stimulus to 
reveal predator awareness. GUD’s can also be used to 
establish landscapes of fear. Makin and colleagues [118], 
for example, used this method to evaluate the predation 
risk perceived by kudu (Tragelaphus strepsiceros), sable 
(Hippotragus niger) and warthogs (Phacochoerus afri-
canus) before and after the release of a predator species, 
the African wild dog (Lycaon pictus). Using a slightly dif-
ferent approach, Jolly and colleagues [143] used giving-
up densities to quantify the ability of Northern quolls 
(Dasyurus hallucatus) to detect and identify predators by 
measuring the food left from a choice of three GUD trays, 
each scented with a different predator odour (including a 
control).

Stimulus presentations represent a broad array of 
assays that facilitate investigation into a wide range of 
behaviours. For example, Aschemeier and colleagues 

[231] examined how woodchucks (Marmota monax) 
responded to conspecific and heterospecific alarm call 
playbacks. Shier and colleagues [175] compared the 
activity and vigilance behaviour of naïve and trained 
prairie dogs (Cynomys ludovicianus) confronted with 
live predators: ferrets, hawks, and snakes. Blumstein and 
colleagues [163] observed activity, foraging, vigilance, 
and escape behaviours of yellow-bellied marmots (Mar-
mota flaviventris) presented with life-sized predator 
photographs.

Range of predator cues
Predator cues fell into two broad categories: direct 
cues, or contextual cues. Direct predator cues indicate 
that a predator is immediately present, whereas con-
textual cues imply that the predator may have recently 
been present, or is nearby. Within these categories, 
predator cues can target different sensory systems, for 
example, cues may include visual (e.g. Fig. 5), olfactory, 
and/or audible stimuli. We provide examples of these 

Table 3 Behavioural assays used to quantify anti-predator responses in mammals

Assay Description Behavior measured Application references

Behavioural focal Ad libitum observations of unprovoked behav-
iours, without the presentation of a stimulus

Activity [5, 73-76]

Exploration [5]

Foraging [77, 78]

Vigilance [74, 77, 78]

Other [74]

Capture probability The probability of an animal entering a trap. 
Traps may be treated with predator cues

Exploration [79-86]

Feeding station Monitoring of behaviour around a food source. 
May include a stimulus

Activity [51, 87-96]

Escape [97, 98]

Exploration [15, 51, 89-91, 93, 95, 97, 99-103]

Foraging [15, 51, 87-89, 91, 92, 94, 95, 100, 102, 104-116]

Vigilance [15, 87, 89-91, 95, 97, 101, 105, 117, 118]

Flight initiation distance The distance at which the animal flees from an 
approaching predator stimulus

Escape [15, 119-124]

Giving-up density The food density at which the animal chooses to 
leave the foraging patch. May include a stimulus

Foraging [75, 79, 85, 91, 92, 118, 125-159]

Stimulus presentation Behavioural observations of an animal following 
the presentation of a predator or other stimulus

Activity [41, 45, 160-234]

Escape [15, 49, 52, 121, 163, 166, 186, 187, 198, 199, 201-
204, 219, 229, 232, 235-248]

Exploration [52, 102, 120, 153, 161, 165, 167, 172, 174, 176-178, 
180, 184, 185, 189, 190, 194, 195, 198, 199, 201-203, 
205-207, 210-213, 217, 219, 222, 225, 229, 230, 233, 
237, 240, 241, 244, 247, 249-262]

Foraging [40, 41, 102, 161-164, 167, 171, 179, 185, 198, 211, 
230, 234, 237, 247, 263-271]

Vigilance [41, 52, 102, 122, 160-166, 170-172, 174-176, 178, 
182, 192, 198, 201-204, 217, 231, 236, 237, 239, 247-
249, 251, 258, 263-267, 271-283]

Other [161, 201, 203, 204, 217, 225-227, 229, 233, 258, 
262, 277, 284]
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categories of stimuli, and list some of their applications 
in Table 4.

Repeatability and assay validation
Measuring the repeatability of behavioural assays allows 
observers to determine whether responses are consist-
ent across time and/or across contexts. In the case of 

anti-predator responses, we would expect behavioural 
assays to be highly repeatable, and for individuals to 
respond consistently to potential predation scenarios. Of 
studies that had repeat observations of known individu-
als, 15.4% calculated the within individual repeatability 
of the behaviours measured. Another robust approach is 
to validate the methodology, for example, by determining 
how the quantified responses correlate to survival, or to 
successful predator escape. While this is not always fea-
sible, across all studies, only 2.4% validated their behav-
ioural assays.

Most effective behavioural assays
Across studies (n =  973), there was no one behavioural 
assay type that elicited greater effect sizes (Hedges’ g) 
than others (Table 5). Model predictions show that stud-
ies utilizing flight initiation distances as a metric for anti-
predator responses had slightly higher Hedges’ g (Fig. 6a), 
but this difference was not statistically significant. Simi-
larly, there was no one behaviour measured that lead to 
greater effect sizes (Table 5). Model estimates show that 
studies measuring activity had slightly higher Hedges’ 
g scores (Fig. 6b). Studies of small (< 5 kg) and medium 
(5–20 kg) species, had lower Hedges’ g compared to stud-
ies of large (> 20 kg) species (Table 5). Studies that ana-
lysed sex independently reported higher Hedges’ g than 
those that pooled responses from males and females 
(Table 5). In contrast, population source (captive, wild or 
haven), predator type (aerial or terrestrial), and preda-
tor source (historic, native, novel, or introduced) did not 
influence Hedges’ g scores, and each of these covariates 
was excluded during model selection.

Most effective predator cues
Of the studies that incorporated predator cues (n = 867), 
the properties examined here did not substantially 

Fig. 5 Examples of visual predator cues used to quantify 
anti-predator responses in mammals; taxidermied cat (a), warthog 
modified to include predator eyes (b), mechanical gray squirrel robot 
(c), and life sized photograph of mountain lion (d) (Adapted from [52, 
100, 163, 279] respectively)

Table 4 Types of predator cues used to quantify anti-predator responses in mammals, and examples of applications in studies

Type Example Application

Direct Visual Predator model (taxidermied, artificial, photograph) [52, 97, 163]

Audible Predator call [89, 164, 266]

Olfactory Predator body odour [90, 171]

Visual + Olfactory Predator fur/skin/feathers [88]

Visual + Audible + Olfactory Live predator [125, 175, 238]

Contextual Visual Conspecific or heterospecific alarm behaviour [279]

Audible Conspecific or heterospecific alarm call [263, 280]

Olfactory Predator urine, predator scent mark [253, 286]

Visual + Olfactory Predator faeces [237, 251]

Visual + Olfactory/Audible Injured conspecific [102]
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explain effect sizes. Neither cue structure (organic or 
synthetic), cue movement (yes or no), cue type (direct or 
indirect), predator type (aerial or terrestrial) or popula-
tion source (wild, captive, havened) had any effect and all 
were eliminated during model selection. Predator source 
(historic, introduced, novel, or native) was not excluded 
during model selection but did not have a significant 
effect (Table  6.) Control type, however, had a substan-
tial effect on Hedges’ g: studies incorporating blank con-
trol types (i.e. lack of stimulus) had larger effect sizes 
than those that utilised control stimulus cues. As with 
the assay model above, studies that analysed males and 
females independently had higher effect sizes (Table 6).

Potential confounding factors
Anti‑predator responses or responses to novel stimuli?
Creating realistic predator cues is a challenge. While 
studies aiming to quantify anti-predator responses may 
find differences among individual responses to preda-
tor cues, it is difficult to discern whether these responses 
accurately reflect how individuals would act in the face 
of real predators. Observed differences may instead be a 
response to a novel environment or stimulus (e.g. neo-
phobia [285]), or may relate more to an animals’ person-
ality (repeatable inter-individual differences in behaviour 
[23]) than their ability to evade predation. It is crucial to 
be able to distinguish between these scenarios, especially 
in the context of conservation translocations, where 
mistaking a curious response to a predator stimulus for 
predator recognition and avoidance abilities may result 
in high mortality if such naïve individuals are exposed to 
predators.

We found that studies that used blank controls com-
pared to those that used non-predator stimulus controls 
had significantly larger effect sizes (p < 0.01; Fig 7a). To 

Table 5 Influence* of behavioural assay properties on effect 
sizes (Hedges’ g)

*The slope, standard error (S.E), and degrees of freedom (df ) for each variable 
in the final model is reported (with levels of a particular variable indicated after 
the underscore), as is the p-value resulting from log likelihood tests of the final 
model (SingleSex + Size) with and without each respective variable

Fixed effect Slope S.E df p‑value

Intercept 2.755 1.799 – –

AssayType_CaptureProbability − 0.459 2.131 5 0.754

AssayType_FeedingStation − 0.188 1.647

AssayType_FlightInitiationDistance 2.278 2.435

AssayType_GivingUpDensity 0.325 1.786

AssayType_StimulusPresentation 0.781 1.542

BehaviourMeasured_Other − 0.070 0.995 5 0.431

BehaviourMeasured_Activity 1.029 0.625

BehaviourMeasured_Escape 0.209 0.787

BehaviourMeasured_Exploration 0.373 0.638

BehaviourMeasured_Vigilance 0.298 0.628

SingleSex 4.406 0.704 1 < 0.001

Size_Medium − 2.113 1.196 2 0.071

Size_Small − 2.198 0.995

Fig. 6 Effect of (a) assay type and (b) behaviour measured on 
differences in effect size, Hedges’ g. Error bars indicate mean +− 
standard errors of the mean.

Table 6 Influence* of predator cue properties on effect sizes 
(Hedges’ g)

*The slope, standard error (S.E), and degrees of freedom (df ) for each variable 
in the final model is reported (with levels of a particular variable indicated after 
the underscore), as is the p-value resulting from log likelihood tests of the final 
model (ControlType + SingleSex) with and without each respective variable

Fixed effect Slope S.E df p‑value

Intercept 4.244 0.954 – –

CueSize_M − 0.537 0.671 2 0.394

CueSize_S − 1.033 0.764

ControlType_Stimulus − 1.890 0.675 1 0.006

SingleSex 4.177 0.733 1 < 0.001

PredatorSource_Introduced − 0.013 0.799 3 0.592

PredatorSource_Native − 0.647 0.610

PredatorSource_Novel − 0.904 1.370
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avoid the confounding effect of novel stimuli, it is essen-
tial to use appropriate control cues. For example, it could 
be appropriate to use a predator faeces as a stimulus, and 
herbivore faeces as a control, or a predator vocalisation 
stimulus and a song from a non-threatening bird as a 
control. Of those studies that incorporated predator cues, 
most used suitable controls, however, 21% used “blank” 
controls (i.e. the absence of any stimulus as a control). 
While this is suitable when comparing responses at dif-
ferent levels of predator exposure, it is not advisable 
when predator cues are used. This is because without an 
appropriate control, it cannot be discerned whether the 
behaviours measured are in response to the cue of a pred-
ator, or merely those associated with investigating a novel 
or unusual cue. Hence, to avoid incorrect over-inflation 
of effect sizes, studies using predator cues should select 
their control stimuli carefully.

Single or pooled sexes
Owing to differences in reproductive strategies, males 
and females may employ different anti-predator 
responses. For example, males, who might regularly trav-
erse unfamiliar territories in pursuit of mating oppor-
tunities, may freeze when confronted with a predator 
as they would be unfamiliar with refuges in the area. In 
contrast a female, who remains within her known ter-
ritory, may flee in the face of a predator as she may be 
aware of refuges, and may aim to distract the predator 
away from vulnerable young. For instance, this differ-
ence has been observed in rats where males respond to 
fear with a “freeze” response, whereas females prefer the 
“dart” response [287]. Without differentiating between 
such strategies, it might appear that some individuals 
display inappropriate anti-predator responses (e.g., freez-
ing when they are expected to flee). Failing to account for 

sexual dimorphism in behavioural responses may thus 
cause anti-predator abilities to be underestimated. Our 
results showed that effect sizes from studies that ana-
lysed males and females independently were approxi-
mately three times greater than those who analysed sexes 
in combination (Table 5). While it is not always possible 
to account for sex, for example, in studies of wild ani-
mals where sex is not known, this finding highlights the 
important effect that behavioural sexual dimorphism 
might have on studies of animal behaviour.

Organic and synthetic predator cues
Thirteen percent of studies reviewed here used artificial 
or synthetic predator cues, for example, plastic preda-
tor models, or synthesized volatile components of faeces 
(trimethylthiazoline, TMT; fox odour). We found no dif-
ferences in effect sizes for organic or synthetic predator 
cues (Table 6). A selection of studies that we came across, 
however, reported that some synthetic compounds, such 
as TMT, were less effective at eliciting responses than 
organic alternatives [182, 185, 210, 212, 244]. While our 
findings did not support this, we only compared organic 
and synthetic cues broadly, and were unable to draw 
these comparisons among cues with different proper-
ties (olfactory, visual, auditory). We recommend that as a 
precaution, organic cues be selected over synthetic ones 
where possible, especially in the case of olfactory cues.

Review limitations
Our review reveals a lack of studies on species from 
South America and Africa (Fig.  4a). This finding could 
be explained by the fact that we only considered articles 
written in English. Despite a search strategy that also 

Fig. 7 Difference in effect sizes between studies that had non-predator stimulus control cues (stimulus), compared to those that had the absence 
of any stimuli as a control (blank) (a), and between studies that pool males and females, compared to those who analyse males and females 
independently (b). Error bars indicate mean +− standard errors of the mean
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targeted grey-literature, the returned results were almost 
exclusively peer-reviewed articles (8% theses, 92% peer-
reviewed journal articles, 0 articles from government or 
NGO reports). Further, of studies that reported means 
and error margins (rather than box plots), 14.9% did 
not specify what unit the error margin represented (i.e. 
standard deviation, standard error, or confidence inter-
vals), which, despite attempts to contact corresponding 
authors, forced us to reject some studies from the quan-
titative analyses. During the article screening process, 
we may have unintentionally introduced biases by only 
performing consistency checks on a subset of the arti-
cles, however, given our high inter-rater reliability scores 
throughout, we are confident that any such biases would 
have minimal effect on our findings. Finally, our analysis 
was limited by our inability to examine interaction effects 
between variables, for example, the interaction between 
cue type and cue properties (olfactory, visual, audi-
tory). Behavioural responses are complex, and without 
investigating fine scale details, such as the effectiveness 
of predator cues that target different sensory systems 
among taxa, our ability to comment on the most effective 
methodology (behavioural assays and predator cues) was 
hampered. Our review delivers a detailed global overview 
of methodology for quantifying anti-predator responses 
in mammals, but owing to limitations in our data set, 
was unable to provide taxa or sensory system specific 
insights.

Review conclusions
Implications for management
This review identifies six major types of behavioural assay 
(behavioural focals, capture probability, feeding station, 
flight initiation distance, giving-up density, and stimu-
lus presentations) that measure five primary behaviours 
(activity, escape, exploration, foraging and vigilance). 
As quantified by differences in effect sizes, there was no 
behavioural assay, nor particular behaviour that was uni-
versally the best at capturing variation in anti-predator 
responses. Similarly, there were no predator cue types or 
properties found to be universally most effective.

Population managers seeking to quantify anti-predator 
responses can use this review to understand the primary 
assay types and behaviours that have been recorded in 
past research. Population managers can also find infor-
mation to replicate existing assays for a particular spe-
cies, with references to specific examples, in Additional 
file  9. Our review has also highlighted the importance 
of controlling for potentially confounding factors. We 
advise managers to take care in selecting appropri-
ate control stimuli (where necessary), to consider using 
organic predator cues over synthetic ones, and to be alert 

to the possibility of sexual dimorphism in anti-predator 
behaviour.

Despite specifically targeting government and NGO 
sources during our search strategy, no studies were 
returned. This suggests that despite growing recognition 
of the impact of anti-predator behaviour on the persis-
tence of mammals [288], measurement of anti-predator 
behaviours are not being widely incorporated into con-
servation monitoring and management. Given that 
behaviour is a key trait mediating impact from predation, 
we urge population managers to incorporate an under-
standing of these behaviours into future management 
strategies.

Implications for research
Information provided by anti-predator behavioural 
assays can be critically important for informing species 
conservation and management. To further this analy-
sis, future work could aim to quantify how well different 
behavioural assays can predict vulnerability to preda-
tion in mammals. Future research might also be directed 
at categories that were underrepresented in this review, 
such as species from South America or Africa, and spe-
cies highly threatened with extinction. Additionally, 
further investigations should focus on understanding 
the anti-predator responses of mammals impacted by 
invasive species, or species that largely exist in isolation 
from predators (e.g., in captive breeding programs, or 
in predator-free havens). An enhanced understanding of 
anti-predator responses would be most beneficial for the 
conservation management of such species.

Gaps in our data set limited our ability to investigate 
the most effective behavioural assays and predator cues 
by preventing us from examining interaction effects. It 
is likely that such effects would provide valuable insights 
into complex behavioural responses. Future research 
could investigate these intricacies within a particular 
group of mammals, or more broadly, in another taxo-
nomic group. The search strategy developed here may be 
applied to other systematic reviews and used for such a 
purpose. As we used a broad search strategy independ-
ent of species information, and scored the satisfaction of 
each article against all criteria, parties interested in rep-
licating this review for alternate taxonomic groups (e.g. 
fish, reptiles, amphibians, birds) could refer to Additional 
file 4 to extract articles from our search which satisfy the 
I, C, O criteria, but not our Population criteria, and re-
assess this subset against a new Population criteria.

We encourage future studies of anti-predator 
responses to incorporate measures of individual repeat-
ability, as it not only strengthens behavioural infer-
ences that can be drawn, but also allows us to assess the 
robustness of the particular behavioural assay. Assays of 
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repeatable behaviours can facilitate robust comparisons 
among individuals, and between populations, offering 
valuable opportunities to compare anti-predator abili-
ties between naïve and predator-exposed populations. 
We further encourage studies of this nature to consider 
validating their methodology, increasing both the relia-
bility of their results, and the robustness of their behav-
ioural assays, which may then be adopted by future 
studies. Finally, we urge future studies of this nature to 
be detailed in their reporting of statistical analyses and 
findings (including units of error reported) to ensure 
accurate, thorough, and transparent communication of 
results and to facilitate subsequent meta-analysis.
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