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Abstract 

Statistical synthesis of data sets (meta‑analysis, MA) has become a popular approach for providing scientific evidence 
to inform environmental and agricultural policy. As the number of published MAs is increasing exponentially, mul‑
tiple MAs are now often available on a specific topic, delivering sometimes conflicting conclusions. To synthesise 
several MAs, a first approach is to extract the primary data of all the MAs and make a new MA of all data. However, 
this approach is not always compatible with the short period of time available to respond to a specific policy request. 
An alternative, and faster, approach is to synthesise the results of the MAs directly, without going back to the primary 
data. However, the reliability of this approach is not well known. In this paper, we evaluate three fast‑track methods 
for synthesising the results of MAs without using the primary data. The performances of these methods are then 
compared to a global MA of primary data. Results show that two of the methods tested can yield similar conclusions 
when compared to global MA of primary data, especially when the level of redundancy between MAs is low. We show 
that the use of biased MAs can reduce the reliability of the conclusions derived from these methods.
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Background
Systematic review and meta-analysis (MA) are essential 
tools for the synthesis of knowledge in many fields, par-
ticularly in medical sciences but also in ecology and envi-
ronmental sciences [12]. A systematic review involves 
the exhaustive assembly, evaluation and synthesis of 
most relevant studies dealing with a specific question. It 

should be based on a detailed protocol limiting the bias 
and favoring a transparent and reproducible approach 
[5]. Systematic review including meta-analysis aims to 
provide quantitative information from a set of relevant 
primary studies. The main output of most MA is a mean 
effect size measuring the effect of an intervention on an 
outcome of interest relatively to a comparator. Together 
with its confidence interval, the mean effect size indicates 
whether the intervention has a significantly positive or 
negative effect on the outcome and provide information 
on the average magnitude of the effect, based on experi-
mental or observational data. Note that, when several 
interventions and comparators are considered in a given 
MA, several mean effect sizes are usually estimated and 
reported.

In environmental and agricultural sciences, it has 
been recognized that MA has several advantages over 
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the use of single studies [18, 24]: (i) MA increases the 
statistical power; (ii) MA allows the assessment of the 
level of generality of local experimental results; (iii) MA 
helps to analyze the variability of the performances of 
farming practices across a range of bio-geographical, 
environmental and farm management conditions; and 
(iv) MA may shed light on seemingly contradictory 
research outcomes. Numerous MAs have been pub-
lished to quantify the impacts of a large range of farm-
ing practices and farming systems (e.g., cover crops, 
intercropping, agroforestry, organic farming and con-
servation agriculture) on many outcomes related, in 
particular, to crop production, water and soil quality, 
biodiversity, pest- and disease-control, and greenhouse 
gas emissions [3, 17, 24, 29–31].

As the number of published MAs is increasing expo-
nentially [2, 12], multiple MAs are now often available 
on a specific topic, reporting a broad range of results 
with sometimes conflicting conclusions. For exam-
ple, more than 10 MAs (each including several dozen 
studies) have been conducted to evaluate the impact of 
agroforestry on soil organic carbon compared to arable 
systems without trees [14, 15]. It is therefore often nec-
essary to consider the results of multiple MAs in order 
to answer a given question, on the basis of all available 
evidence. To synthesise multiple MAs, a first approach 
is to retrieve the original individual effect sizes (or orig-
inal experimental data) of all the MAs and make a new 
MA of the whole dataset. This approach can be quickly 
implemented only if all individual effect sizes (and their 
standard errors) used in each first order meta-analysis 
are available but, in practice, this is often not the case 
[2, 26]. When these data are not available, they need 
to be extracted from the individual studies and this 
approach then becomes time consuming and not always 
compatible with the time available to respond to a spe-
cific policy advice request. Lack of time is often seen as 
a major barrier to the use of scientific evidence by pol-
icy makers [7, 23]. Often the demands of policy makers 
have to be met within a few days or a few weeks, which 
does not leave enough time to extract the primary data 
taken into account by the MAs. This is particularly 
the case for requests from the European Commission 
(e.g., DG Agri) concerning the environmental impact 
of agricultural practices (European Commission, [10]). 
Indeed, in order to identify effective sustainable tech-
niques and justify public subsidies supporting specific 
farming practices, it is necessary to provide the deci-
sion-makers with robust scientific evidence in a short 
period of time. We are considering here a real situation 
where decision-makers demand a response within a 
few weeks and where several MAs of good quality have 
already been published (Makowski et al. [19]).

To provide a rapid approach of evaluating interven-
tions (e.g., agricultural practices, nature restoration 
techniques) based on a large number of experiments, 
an alternative approach is to synthesize the results of 
several MAs without going back to the original primary 
data. This is for example the case in vote-counting of 
MA results or in second-order MAs, which has gained in 
popularity, especially in agricultural sciences and ecology 
[3, 6, 11, 31]. These approaches present several practical 
advantages, in particular for the stakeholders involved in 
policy decision-making. However, several potential limi-
tations have been identified for some of these fast-track 
methods (e.g., partial redundancy between MAs, lack of 
statistical power, risk of bias) and the reliability of their 
results is barely studied. Thus, there is a need to assess 
the performances of different time-saving methods for 
synthesizing results of MAs in order to inform effective 
environmental policies.

The evaluation of these methods is all the more impor-
tant since syntheses of MAs are potentially subject to 
different types of bias. Although the systematic review 
methodology was designed to both reduce bias in syn-
theses and assess risk of bias in primary datasets, dif-
ferent types of bias may occur at different stages of the 
process, i.e., in the individual experiments included in a 
systematic review (e.g., bias arising from the randomisa-
tion process, bias in measurement of the outcome), in the 
individual meta-analyses (in particular, publication bias 
resulting from the selection of studies during the pub-
lication process), and during the synthesis of the MAs 
(e.g., selection of MAs with special characteristics). These 
biases can be cumulative. Indeed, since the conclusions 
drawn in a meta-analysis depend on the results of the 
included studies, if the results of the individual studies 
are biased, a meta-analysis of these studies could produce 
a misleading conclusion. Subsequently, the syntheses of 
biased MAs could lead to an overestimation or underesti-
mation of the magnitude of the effect. Several tools have 
been developed to detect the existence of bias [27, 34] 
and even to correct biased meta-analyses [9, 22]. How-
ever, as it is not possible to totally eliminate bias, it is still 
important to assess the impact of these biases on the per-
formance of MA synthesis methods. Among the differ-
ent types of bias, publication bias has attracted a special 
attention because it can lead to a strong under-estimation 
or over-estimation of the true mean effect sizes [35].

The objective of this paper is to contribute to the field 
of evidence synthesis by comparing the performances 
of three fast-track methods for synthesising the results 
of MAs without using the original primary data, namely 
(i) second-order MA (MA of mean effect sizes of first-
order MAs) (SOMA), (ii) single most accurate first-
order MA (MA reporting the mean effect size with the 
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lowest coefficient of variation) (MAMA), (iii) major-
ity of first-order MAs results (vote counting of MAs 
results reporting positive, negative, and non-significant 
effect) (COMA). These methods are reflective of fast-
track methods commonly used in practice [3, 6, 8, 11, 
31]. Using simulated data [20], we compare the results of 
these three methods to the results obtained by a global 
MA of primary data (REMA, Cooper and Koenda, [8]). 
It should be noted that we focus here on MAs evaluating 
the effect of an intervention versus a comparator, as this 
type of MAs is widespread and is often used by decision-
makers to assess the performance of a given intervention.

Our results show that the method SOMA performs 
well detecting an existing effect, but leads to a relatively 
high rate of false discovery (risk of wrongly concluding 
that an effect exists) in case of high redundancy of pri-
mary data between first-order MAs (i.e., when several 
MAs have in common a high proportion of studies). 
The method MAMA leads to biased estimates even in 
the absence of publication bias, due to its tendency to 
select extreme mean effect sizes. Finally, when the sam-
ple size of each MA is small, the method COMA tends 
to miss existing effects due to a lack of statistical power, 
but it has a very low false discovery rate and can thus be 
trusted when concluding to a positive or negative effect. 
Our results also show that the existence of publication 
bias can reduce the reliability of the conclusions of these 
methods under certain conditions. Overall, this study 
shows that second-order MA and majority-results can 
yield similar conclusions when compared to global MA 
of primary data, especially when the level of redundancy 
between first-order MAs is low. However, when practi-
cally possible, global MA of the original primary stud-
ies (REMA) should remain the preferred method as it 
reduces the risk of erroneous conclusions.

Methods
Methods considered for synthesizing the results 
of meta‑analyses
We consider three fast-track methods and compare them 
to a reference method used as a benchmark (Table  1). 
The first method (SOMA) consists in conducting a sec-
ond-order MA based on the mean effect sizes produced 
by a series of first-order MA. Instead of analysing the pri-
mary data, the method SOMA computes a weighted 
average of the mean effect sizes produced by the first-
order MAs. Thus, if the results of K first-order MAs are 
available, SOMA summarises the K corresponding esti-
mated mean effect sizes by computing the average of 
these K values, using their respective variances as 
weights. The result of SOMA is a new single overall mean 
effect size summarising the whole set of K first-order 
MA. Formally, let define the K first-order estimated mean 
effect sizes as �1,�2, . . . ,�k . . . ,�K  provided by the K 
MAs, and their standard errors asσ1, σ2, . . . , σ k . . . , σK  . 
Assuming a Gaussian distribution and independence 
between the �k , k = 1,…,K, and following the standard 
procedure commonly used for MA (Borenstein et al. [4]), 
SOMA estimates an overall mean effect size as 

�SOMA =

∑K
k wk�k
∑K

k wk

 , where the weight wk is defined as 

wk = 1

τ 2+σ
2
k

 , with τ 2 the variance measuring the hetero-

geneity between the first-order MAs. SOMA also com-
putes the lower and upper bounds of the 95% confidence 
interval of �SOMA as LSOMA = �SOMA − 1.96δSOMA 
andUSOMA = �SOMA + 1.96δSOMA , where δSOMA is a 
standard error of �SOMA computed as the inverse of the 
square root of the sum of the weight wk , as in standard 
MA (Borenstein et al. [4]). Based on SOMA, the effect is 
then be considered as significantly positive if LSOMA > 0 , 

Table 1 Methods considered to synthesize results of meta‑analyses

Name Inputs Use data 
from primary 
studies

Procedure Outcome

Second‑order meta‑analysis 
(SOMA)

Mean effect size of 1st order 
MAs and their standard errors

No Weighted average 
of the means effect sizes 
reported by the MAs

Overall mean effect size and its 
confidence interval

Most accurate meta‑analysis 
(MAMA)

Mean effect size of 1st order 
MAs and their standard errors

No Select the most accurate MA 
based on coefficient of vari‑
ation

Mean effect size and confidence 
interval of the most accurate  1st 
order MA

Counting of meta‑analysis 
results (COMA)

Confidence intervals of mean 
effect sizes of 1st order MAs

No Count the number of sig‑
nificant positive and negative 
effects, and of non‑significant 
effects

Qualitative score (Positive effect, 
Negative effect, No effect)

Reference meta‑analysis 
(REMA)

Individual effect sizes of pri‑
mary studies and their stand‑
ard errors (or original data)

Yes Global MA of all individual 
studies

Overall mean effect size and its 
confidence interval
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significantly negative if USOMA < 0 , and not significant if 
LSOMA < 0 < USOMA . This method is attractive as it 
allows one to summarize the results of the K first-order 
MAs by a single mean value ( �SOMA ) and to describe the 
uncertainty by a single confidence interval [ LSOMA , 
USOMA ]. However, the hypothesis of independence of 
the �k , k = 1,…,K is violated if the first-order MAs were 
performed from overlapping datasets (i.e., datasets shar-
ing some primary studies).

The second method (MAMA) consists in selecting a 
single MA among the K first-order MAs. Here, we select 
the MA leading to the most accurate mean effect size 
estimate, where the accuracy is measured through a coef-
ficient of variation (CV) defined as the ratio of the stand-
ard error of the estimated mean effect size to the absolute 
value of the estimated mean effect size, i.e., CV k =

σk
|�k |

 , 
k = 1, …, K. The coefficient of variation is a standard 
measure of accuracy (the lower, the most accurate). In 
the context of MA, CV expresses the accuracy of the esti-
mated mean effect size as a single number, resulting from 
the combination of several factors such as the number of 
individual studies, the accuracy of each of these studies 
(depending itself on the number of data and their disper-
sion), the heterogeneity among studies, and the size of 
the effect. With MAMA, the whole set of first-order MA 
is summarized by the mean effect size (and its 95% confi-
dence interval) reported in the MA with the lowest CV, 
further noted as �MAMA , LMAMA and UMAMA . Based on 
MAMA, the effect is considered as significantly positive 
if LMAMA > 0 , significantly negative if UMAMA < 0 , and 
not significant if LMAMA < 0 < UMAMA

The third method (COMA) is based on a vote counting 
procedure. Instead of combining the K first-order mean 
effect sizes into an overall mean effect size as in SOMA, 
the method COMA allocates the K first-order MAs in 
three categories according to the 95% confidence inter-
vals of the estimated first-order mean effect sizes. Let 
note the lower and upper bounds of confidence interval 
associated with the mean effect size reported by the  kth 
MA as Lk = �k − 1.96σk and Uk = �k + 1.96σk , respec-
tively. The  kth meta-analysis is allocated to the positive 
category if Lk > 0 , to the negative category if Uk < 0 , 
and to the no effect category if Lk < 0 < Uk . The num-
ber of MAs falling in each category is then counted and 
the category with most votes is identified. This approach 
does not quantify any effect size but allows one to catego-
rize the effect among three categories, namely positive 
(majority of significantly positive first-order mean effect 
size), negative (majority of significantly negative), or no 
effect (majority of no effect).

Finally, the reference method (REMA) consists in per-
forming a meta-analysis of all the individual studies taken 

into account by the K first-order MAs. Thus, if each 
MA is based in N studies and if all studies are different, 
REMA estimates a mean effect size based on the K × N  
primary studies. If some of the studies are common 
among the K MAs, the redundant primary studies are 
removed before the analysis and the total number of pri-
mary studies used by REMA is then lower than K × N  . 
As with SOMA, the result of REMA is an overall mean 
effect size and its corresponding 95% confidence interval 
�REMA , LREMA and UREMA . Based on REMA, the effect is 
then be considered as significantly positive if LREMA > 0 , 
significantly negative if UREMA < 0 , and not significant 
if LREMA < 0 < UREMA . Note that, contrary to the other 
methods, REMA relies on the primary data, while SOMA, 
MAMA, and COMA do not request this type of data and 
rely only on the results provided by the MAs. Compared 
to SOMA, REMA has the advantage to avoid the use of 
redundant studies (i.e., primary studies shared by several 
first-order MAs). However, this approach requires the 
extraction of all data published in primary studies and 
thus requires more working time than SOMA.

Simulations assuming that the MAs are unbiased
Simulated data [20] are traditionally used to compare the 
performance of different statistical methods (e.g., meth-
ods used to estimate some parameters of interest, for 
example a mean effect size). Simulated data are generated 
with an explicit statistical model and ‘true’ parameter 
values chosen by the scientists conducting the assess-
ment. The statistical methods considered are applied to 
the simulated data and their results are compared to the 
true values. This approach is a standard practice in sta-
tistics because it offers a practical way to compare esti-
mated parameter values to true parameter values. Such a 
comparison is impossible with real data because the true 
parameter values are unknown in real case studies.

In order to explore a larger diversity of scenarios, data-
sets were simulated using a hierarchical statistical model 
widely used in MA [4, 13], defined as yi = θi + εi , with 
θi ∼ N

(

µ, σ 2
θ

)

 and εi ∼ N
(

µ, σ 2
εi

)

 . In this model, yi is the 
individual effect size (typically, a log ratio) reported in the 
ith study. The parameter µ is the true mean effect, i.e., 
the quantity that we want to estimate as accurately as 
possible or, at least, classify in three categories “positive” 
( µ > 0 ), “negative” ( µ < 0 ), “no effect” ( µ = 0 ). The vari-
ance σ 2

θ  represents the between-study variance of the true 
effect size of the ith study ( θi) , and σ 2

εi is the within-study 
variance (each study is assumed to have a specific vari-
ance in order to reflect the fact that some studies may be 
more accurate than others).

The statistical model is used to generate datasets and 
compare the methods SOMA, MAMA, COMA and 
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REMA, as described in Fig. 1. The datasets are generated 
according to different scenarios, each characterized by 
a true mean effect size ( µ = −0.69,−0.29, 0, 0.22, 0.41 , 
expressed as a log ratio, corresponding to relative change 
of − 50%, − 25%, 0%, + 25%, + 50%, respectively), a num-
ber of first-order MAs (K = 3, 5, 10), a number of primary 
data in each first-order MA (N = 10, 15, 25, 50), a propor-
tion of common data among the K first-order MAs (P = 0, 
10, 25, 50%), and a level of precision of primary data (low, 
medium, high within-study variances σ 2

εi ). The total num-
ber of scenarios is thus 5 × 3 × 4 × 4 × 3 = 720.

At each iteration for a given scenario, K virtual data-
sets are generated using the statistical model defined 
above. Each one of these K datasets is specified such as 
it includes N data (N pairs of yi and σ 2

εi ), with a propor-
tion P of common data among the K datasets. A MA is 
then performed using each dataset in turn with a ran-
dom-effect model, leading to K estimated mean effect 
sizes ( �1,�2, . . . ,�k . . . ,�K  ) and their standard errors 
(σ1, σ2, . . . , σ k . . . , σK  ) (Fig.  1). These results are then 
used to implement the method SOMA, MAMA, and 
COMA as explained above. Finally, the K subsets of 
data are merged together and used to implement a sin-
gle global meta-analysis—after the removal of the P% 

of redundant data—in order to implement the method 
REMA (Fig. 1). The procedure is repeated 100 times for 
each scenario. The computations were done with the R 
software (R Core Team, 2021). The code used to simulate 
data is shown in Additional file  1: A and all codes used 
in the analysis are available at https:// github. com/ davem 
akows ki/ CodeP aper2 ndOrd erMAs.

Simulations of biased first‑order MAs
Publication bias may arise from the preferential publica-
tion of statistically significant studies and/or of studies 
with results in a particular direction (positive or nega-
tive). In order to better understand the impact of pub-
lication bias on the results of the methods presented 
in Table  1, we made additional simulations consider-
ing three types of publication bias, successively: (i) bias 
resulting from the selective publication of studies with 
statistically significant individual effects (negative or pos-
itive), (ii) bias resulting from the selective publication of 
studies with statistically significant negative effects, (iii) 
bias resulting from the selective publication of studies 
with statistically significant positive effects. With the first 
type of bias, we consider that an individual study show-
ing non-significant effect is not published, while an indi-
vidual study showing a significant effect size is published, 

Fig. 1 Implementation of the methods SOMA, MAMA, COMA, and REMA (see Table 1) to simulated data. For a given scenario (characterized 
by a true mean effect size µ , a number of datasets (K), a number of data per dataset (N), a level of redundancy (P), and a level of precision), 
a hierarchical Gaussian model is used to generate K datasets, each including N data (effect sizes and standard errors). A 1st order MA is performed 
using each dataset in turn, generating K mean effect sizes ( �1,�2, . . . ,�k . . . ,�K ) and standard errors (σ1, σ2, . . . , σ k . . . , σK ). These quantities are 
used to implement the methods SOMA, MAMA, and COMA (see text). In addition, the K datasets are merged to produce a single global dataset used 
to implement the method REMA

https://github.com/davemakowski/CodePaper2ndOrderMAs
https://github.com/davemakowski/CodePaper2ndOrderMAs
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whatever the direction of the effect. With the second 
(third) types of bias, we consider that an individual study 
is published only if it shows a significant negative (posi-
tive) effect. The conditions of publication are thus more 
restrictive with the second and third types of bias than 
with the first one. 

The datasets are generated considering 27 sce-
narios, each characterized by a true mean effect size 
( µ = −0.69,−0.29, 0 , expressed as a log ratio, corre-
sponding to relative change of −  50%, −  25%, and 0%, 
respectively), a number of first-order MAs (K = 3, 5, 10), 
and a type of publication bias (i, ii, or iii, as explained 
above). The number of primary data in each first-order 
MA was set to N = 50, P was set equal to 0, and the level 
of precision of primary data was set to medium within-
study variances in all scenarios. The same procedure as 
above is implemented to generate K datasets each includ-
ing N data (pairs of yi and σ 2

εi ), at each iteration. How-
ever, here, the data are generated to reflect publication 
bias, considering a statistical significance at a level of 
5%. For publication bias 1, the data are generated such 
as  yi + 1.96 σ 2

εi < 0 or yi—1.96 σ 2
εi > 0 (i.e., significantly 

positive or negative effect). For publication bias 2 (3), the 
data are generated such as  yi + 1.96 σεi < 0 ( yi—1.96 σεi 
> 0). Note that, here, the third type of bias is the most 
extreme  because it implies that the studies are delib-
erately selected to show results that are opposite to the 
truth. The procedure is repeated 100 times for each sce-
nario. We did not perform simulations for positive val-
ues of µ because the results would have been symmetrical 
and the conclusions unchanged. 

Method comparison
SOMA, MAMA, COMA and REMA are compared using 
four criteria, namely the probability of correct conclusion 
(PCC), the bias of the estimated mean effect size (BES), 
the root mean square error of the estimated mean effect 
size (RMSE), and the coverage of the confidence interval 
of the estimated mean effect size (CCI). These criteria are 
computed for each scenario, as explained below.

For each scenario, we obtain a series of 100 estimated 
mean effect size estimates and confidence intervals for 
the SOMA, MAMA, and REMA methods. The 100 con-
fidence intervals of SOMA, MAMA and REMA are used 
to allocate the 100 corresponding estimated mean effect 
sizes to categories selected among positive, negative, and 
no effect. For COMA, we obtain the majority results of 
the K MAs, as explained above.  A good classifier would 
correspond to a classifier selecting the true  category 
(“negative”, “positive” or “no effect”, depending on the sce-
nario considered) as often as possible. Consequently, the 
relevance of the categories generated by each method is 

evaluated by calculating PCC as the proportion of the 100 
categories corresponding to the true category. The proba-
bility of correct conclusion PCC assesses the ability of the 
methods to determine the true direction of the effect of 
the tested intervention relatively to the comparator, but 
it does not evaluate the accuracy of the estimated mean 
effect sizes obtained with SOMA, MAMA, and REMA. 
In order to do so, we calculate three other criteria; the 
bias BES defined as the difference between the ‘true’ 
mean effect size (μ) and the average of the 100 estimated 
mean effect sizes obtained with SOMA, MAMA and 
REMA, the RMSE defined as the root square of mean of 
the squared difference between the 100 estimated mean 
effect size and the value of μ, and the coverage of the 95% 
confidence interval CCI defined as the proportions of the 
100 confidence intervals including μ. Note that bias and 
RMSE values are related to each other because the bias 
is one of the components of the RMSE (Mean squared 
error =  Bias2 + Variance). Thus, an increase (decrease) of 
absolute bias tends to increase (decrease) the RMSE.

The criteria PCC, BES, RMSE, and CCI are computed 
considering each of the scenarios defined above in turn. 
The results obtained assuming no publication bias are 
first presented, and are then compared with the results 
obtained with publication bias. Other types of bias are 
not considered.

REMA SOMA MAMA COMA
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Fig. 2 Proportion of correct conclusion obtained with the four 
methods. Each boxplot describes the distributions across 720 
scenarios characterized by different numbers of first‑order MAs, 
data per MA, and different levels of redundancy between first‑order 
MAs (see Methods). Red dashed lines indicate the proportions 
0.75 and 0.9. The numbers displayed below the boxplots indicate 
the proportion of scenarios where the proportion of correct 
conclusion is lower than 90% and 75%, respectively. The proportion 
of correct conclusion PCC assesses the ability of the methods 
to determine the true direction of the effect of the tested 
intervention relatively to the comparator
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Results
Results obtained when the first‑order MAs are unbiased
Figure 2 shows that all methods lead to high proportions 
of correct conclusions (PCC) in most scenarios, but with 
some differences between methods. The PCC values of all 
methods are above 0.9 in more than 75% of the scenarios, 
but the PCC values of REMA are less variable than those 
of the other methods, in particular compared to COMA 
and MAMA. Thus, while PCC is lower than 0.9 in 0% 
and 12% of the scenarios with REMA and SOMA respec-
tively, these percentages reach 16% and 21% with COMA 
and MAMA respectively (Fig. 2). Interestingly, values of 
PCC are highly dependent on the true value of the mean 
effect size (Fig.  3). With REMA, SOMA and MAMA, 
the proportion of correct conclusions is thus very close 
to one when the true mean effect size is different from 
zero (i.e., when there is a true positive or negative effect) 
but this proportion is lower when the true mean effect 
is zero (i.e., true no effect). In case of absence of effect, 

the risk of false discovery (concluding that there is an 
effect while there is no effect in reality) can reach high 
values in a relatively large proportion of scenarios with 
SOMA and MAMA, and more particularly with MAMA 
for which PCC is lower than 0.75 (i.e., more than 25% 
chance of false discovery) in more than 50% of the sce-
narios tested (Fig. 3C). The results obtained with COMA 
are opposite. Indeed, with this method, values of PCC 
are very close to one when the true mean effect is zero 
but tend to be substantially lower than one in case of true 
positive or negative mean effects (Fig. 3D). These results 
indicate that the conclusions of COMA are more reliable 
in case of absence of effect (almost no risk of false dis-
covery with COMA in case of true absence of effect) but 
that, on the contrary, the conclusions of REMA, SOMA 
and MAMA are more reliable in case of true positive or 
negative effects. The values of PCC decrease significantly 
with the proportion of common data, but the magnitude 
of the  decline is small, as shown by the median PCC, 
which remains well above 0.9 with all the proportions 
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of common data considered (even 50%) and all methods 
(Additional file 1: B).

Figures 4–5 show the results of the assessment of the 
accuracy of the quantitative mean effect size estimated 
with REMA, SOMA and MAMA. The RMSE values of 
REMA and SOMA are strongly correlated, but the RMSE 
of SOMA tends to be slightly higher than the RMSE of 
REMA (Fig.  4A). Both REMA and SOMA exhibit near-
zero bias (Fig. 4C). The RMSE values of MAMA are on 
average twice as high as REMA values (Fig.  4B). More-
over, the bias of MAMA can be very either highly posi-
tive or negative (Fig. 4D), revealing that the mean effect 
sizes estimated with this method are often higher or 
smaller than the true values. Whether the bias of MAMA 

is positive, negative or close to zero depends on the true 
mean effect size (Fig. 4C). While the bias is zero in case 
of true absence of effect, the method MAMA tends to 
overestimate (underestimate) the effect size in case of 
true positive (negative) effect (Fig.  4C). In other words, 
the mean effect sizes estimated by MAMA tend to be 
too extreme (either positively or negatively). Note that, 
in Figs. 4–5, publication bias and bias of individual stud-
ies are assumed to be equal to zero. The only type of 
bias considered here is that induced by the statistical 
procedures.

The coverage levels of the confidence intervals obtained 
with REMA are close to 0.95. On the contrary, the cover-
age levels obtained with SOMA and MAMA are often 
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lower than this value. This result reveals that the confi-
dence intervals obtained with SOMA and MAMA tend 
to be too narrow (Fig.  4E, F, Fig.  5). The coverage lev-
els of SOMA are significantly impacted by the scenario 
characteristics, especially by the proportion of common 
data among first-order MAs (see Additional file  1: C 
and Fig.  5A). With SOMA, the coverage levels are very 
close to zero in case of absence of common data, while 
they become much lower than 0.95 when the propor-
tion of common data is high (Fig. 5A). With MAMA, the 
coverage levels are significantly related to the number of 
first-order MAs, and tend to become too low when the 
number of MAs is high (Fig. 5B).

Impact of publication bias
Figure  6 shows the bias of mean effect sizes estimated 
with the methods MAMA, REMA, and SOMA, with and 
without publication bias in first-order MAs. Clearly, the 
presence of a publication bias has an impact on the mean 
effect sizes estimated by the three synthesis methods, but 
the level of impact depends on the method, on the type 
of publication bias, and on the true effect. COMA is not 
considered here because this method does not provide 
quantitative mean effect size estimate.

When the true effect is negative (−  0.29 or −  0.69), 
the publication bias of types 1 (“only individual studies 
showing significant effects are published”) and 2 (“only 
individual studies with significant negative effects are 
published”) both induce a negative bias in the mean effect 
sizes estimated with MAMA, REMA, and SOMA. It 
means that, with publication bias 1 and 2, the synthesis of 
first-order MAs tends to produce mean effect sizes that 
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are in the right direction (i.e., negative effects, here) but 
too extreme (i.e., too strongly negative). On the contrary, 
publication bias of type 3 (“only individual studies with 
significant positive effects are published”) induces a posi-
tive bias in mean effect sizes for all methods, i.e., mean 
effect sizes tend to be in the opposite direction than the 
true value (i.e., positive effect instead of negative). The 
reason is that, with publication bias 1 and 2, the individ-
ual effect sizes selected for the first-order MAs are more 
extreme than those available in the absence of publica-
tion bias, but remain in the right direction in most cases 
(see Additional file  1: D for an example of a simulated 
sample of individual effect sizes). The impact of publica-
tion bias 2 is stronger than the impact of publication bias 
1 because, while both significantly positive and negative 
individual effect sizes are selected with publication bias 
1, only significantly negative individual effect sizes are 
selected with publication bias 2.  With publication bias 
3, it is assumed that only significantly positive individual 
effects are selected, resulting in positive estimated first-
order mean effect sizes instead of negative (see Additional 
file 1: D for an example of sample of simulated individual 
effect sizes). This type of publication bias induces a posi-
tive bias in the mean effect sizes estimated with MAMA, 
REMA, and SOMA (Fig. 6).

Interestingly, in absence of publication bias (purple 
color in Fig.  6), MAMA still shows a small bias, con-
trary to SOMA and REMA. This is consistent with the 
results presented in Fig. 4D. This bias is due to the fact 
that MAMA tends to select extreme first-order MAs, and 
this type of bias occurs even in the absence of publication 
bias. However, the level of this bias is lower than the bias 
obtained in case of presence of publication bias.

When the true effect is zero, publication bias type 1 
does not induce any substantial bias on the mean effect 
sizes estimated with the methods MAMA, REMA, and 
SOMA (Fig. 6). This is because the individual effect sizes 
selected under publication bias 1 tend to be equally posi-
tive or negative, and thus tend to compensate each other, 
leading to a first-order mean effect size close to zero. 
Thus, in case of absence of effect, publication bias 1 does 
not impact the results of MAMA, REMA, and SOMA 
substantially. On the contrary, when the true effect is 
zero, the publication bias 2 and 3 lead to an underestima-
tion and overestimation of the mean effect size, respec-
tively, thus generating biased mean effect sizes (Fig. 6).

Figure  7 shows the RMSE obtained with MAMA, 
REMA, and SOMA with and without publication bias. 
The RMSE is higher with publication bias than without, 
but its level depends on the type of publication bias con-
sidered. The highest RMSE values are obtained with pub-
lication bias 2 and 3, due to the fact that more extreme 
individual effect sizes tend to be selected in these cases. 
The RMSE values obtained with publication bias 1 are 
lower but still higher than the RMSE values obtained 
without publication bias.

Figure  8 shows the proportion of wrong conclusions 
(i.e., 1-PCC) obtained with COMA, MAMA, REMA, and 
SOMA, with and without publication bias. The results 
are contrasted, depending on the true value of the mean 
effect size and on the type of publication bias, especially 
on whether individual studies are deliberately selected to 
show results that are opposite to the truth. When the true 
value is negative, the proportion of wrong conclusion is 
zero with publication bias 1 and 2. This is logical because, 
as mentioned above, publication bias 1 and 2 lead to too 
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extreme estimated values of mean effect sizes but the 
estimated values still remain in the right direction. In 
other words, the mean effect sizes estimated with pub-
lication bias 1 and 2 indicate significant negative effects 
and, although the estimated values are too extreme, they 
lead always to a correct conclusion (a symmetrical result 
would have been obtained if the true effect was chosen 
to be positive for data simulation). On the contrary, with 
publication bias 3, the mean effect sizes provided by the 
first-order MAs are opposite to the true value and thus 
systematically lead to the wrong conclusion (i.e., positive 
effects are estimated while the truth is negative effect). 
The proportion of wrong conclusion is thus always equal 
to 1 with publication bias 3.

When the true value is zero, the proportion of wrong 
conclusion is close to zero with COMA, REMA, and 
SOMA in case of publication bias of type 1 (Fig. 8). This 
is because the significant individual effect sizes selected 
under publication bias 1 tend to be equally positive or 
negative, and thus compensate each other, leading to a 
first-order mean effect size generally non-significantly 
different from zero. With MAMA and publication bias 
1, the proportion of wrong conclusion is larger because 
this method tends to select the most extreme first-order 
MA available. Consequently, MAMA sometimes selects 
a first-order MA showing a significantly positive or neg-
ative effect only because it has a lower CV, leading to a 
wrong conclusion. In case of publication bias 2 and 3 and 
absence of effect (μ = 0), the proportion of wrong conclu-
sions is close to 100% with all four methods because the 
selected individual effect sizes (and resulting first-order 
MAs) show either significantly negative (publication bias 
2) or significantly positive (publication bias 3) results, 
while no effect exists in the reality. Note that similar 

results are obtained with the two other values of K con-
sidered (Additional file 1: E and F).

Discussion
The number of MAs and systematic reviews published 
has increased markedly over the past two decades, in 
particular in medical science [1, 16, 28, 32], in biology 
(Nagakawa et  al. [21]), and more recently in environ-
mental and agricultural science [3]. With the increased 
number of MAs available, a logical next step is to conduct 
umbrella reviews of existing MAs in order to synthe-
size their findings, thereby providing policy makers with 
robust evidence (Makowski et  al. [19]). Until now, very 
little attention has been paid to methods for synthesiz-
ing results from several MAs and it is therefore becom-
ing increasingly important to compare the performance 
of such methods.

In this study, we have compared four methods (REMA, 
SOMA, MAMA, COMA) able to determine whether the 
intervention under consideration has a positive, negative, 
or no effect relative to its comparator, based on several 
MAs. Three of these methods (REMA, SOMA, MAMA) 
allow to quantify the average size of this effect as well, 
and thus go beyond a qualitative conclusion, while the 
last one (COMA) only provides a qualitative information 
about the direction of the effect. The method COMA is 
thus less informative than the three others as it does not 
allow to quantify effect sizes, but it is faster to implement 
as it does not require the extraction of the effect sizes but 
only whether the MAs show significantly positive, nega-
tive, or not statistically significant effect.

Of the three quantitative methods, REMA clearly 
requires more effort than SOMA and MAMA because 
it relies on the primary studies and not on the average 
effect sizes of MAs. To implement REMA, it is therefore 
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necessary to compile data from all primary studies, 
whereas this is not necessary with SOMA and MAMA. 
In terms of implementation time, the methods consid-
ered here can thus be classified into three categories: the 
fastest is the COMA method, the SOMA and MAMA 
methods are intermediate, and the most time consuming 
is REMA.

The four methods have contrasted performances, both 
in terms of probability of correct conclusion concerning 
the existence or non-existence of an effect and in terms 
of accuracy of the quantitative estimation of the effect 
size. Their performances also depend on the presence or 
absence of publication bias, and on the type of publica-
tion bias considered.

In case of absence of publication bias, the probability of 
correct decision is very high with REMA in all situations. 
Conversely, this probability is lower with both SOMA 
and MAMA in case of true absence of effect, and also 
lower with COMA in case of true positive or true nega-
tive effect. This means that SOMA and MAMA lead to 
a higher risk of false discovery (i.e., false conclusion of a 
"positive" or "negative" effect), while COMA leads to a 
higher risk of a false "no effect" conclusion. For COMA, 
the lower probability of a correct conclusion is related 
to a lack of statistical power. Indeed, with COMA, the 
results of the first-order MAs are not combined together 
to obtain an overall, more accurate estimate. The lack 
of power of COMA is less problematic than the lack of 
power of the vote counting approach based on individual 
studies (Borenstein et  al. [4], chapter  28) because each 
first-order MA combines several studies and has thus 
more power than any single individual studies. Neverthe-
less, COMA still suffers from a lack of statistical power 
compared to the three other methods considered here, 
especially when the sample size of each MA is low. In 
case of publication bias, the probability of correct deci-
sion is generally unchanged with all methods, with two 
noticeable exceptions; (i) in case of a publication bias 
leading to the systematic selection of studies showing 
conclusions opposite to the truth, (ii) in case of absence 
of effect (true effect equal to zero) and systematic selec-
tion of studies showing effects all in the same direction. 
In all other cases, the probability of correct conclusion 
is similar with and without publication bias, especially 
when the publication bias leads to the selection of statis-
tically significant studies without any preference in terms 
of direction of effect.

The mean effect sizes estimated by three quantitative 
methods do not have the same level of precision. The best 
results are obtained with REMA. Performances of SOMA 
are close, in particular the bias of SOMA and REMA 
are similar. Results obtained with MAMA are much 
more biased and the mean effect sizes estimated by this 

method tend to be too extreme, either too strongly posi-
tive or too strongly negative. The poor performance of 
MAMA is due to the fact that this method is based on the 
single MA with the lowest coefficient of variation, i.e. on 
the MA with the lowest ratio of standard error to abso-
lute mean value. For this reason, MAMA tends to select 
MA with large absolute mean values that can be quite 
different from the true mean value. Another issue with 
MAMA and SOMA is that, in some situations, their con-
fidence intervals are too narrow and give an overly opti-
mistic view of the accuracy of the estimated mean effect 
sizes. With MAMA, the confidence intervals are too nar-
row when the number of first-order MA is equal to or 
higher than five. The reason is again related to the fact 
that MAMA select the single most accurate MA among 
the set of available MAs. The MA selected with MAMA 
tends thus to be the first-order MA with most narrow 
confidence interval among the set of available MAs. Con-
sequently, when the set of first-order MAs is large, the 
confidence interval of the MA selected by MAMA can 
be very narrow. With SOMA, the confidence intervals 
tend to be too narrow when the redundancy between the 
first-order MAs is high, specifically when the propor-
tion of data in common among the MAs is higher than 
25%. In this case, the assumption of independence of the 
first-order MAs is unrealistic and the confidence inter-
vals computed by the second-order MA is too optimistic. 
On the other hand, when the redundancy between first-
order MAs is low, the coverages of the confidence inter-
vals of SOMA are satisfactory. It is worth noting that the 
SOMA method also allows for re-estimation of the mean 
effect sizes of first-order MAs using shrunken estimators 
(BLUP), as shown by Fox [11]. However, for policy deci-
sion support, the overall mean effect across all MAs is 
more relevant because it summarizes all available infor-
mation in a single meaningful number.

Finally, it is important to mention that the accuracy of 
the mean effect sizes provided by MAMA, REMA, and 
SOMA is impacted by the presence of publication bias. 
Interestingly, all types of publication bias do not have the 
same impact. The strongest impact was found with a pub-
lication bias selecting studies showing results opposite to 
the truth, which is probably not a very common type of 
publication bias. The smallest impact was found with a 
publication bias selecting studies with statistically signifi-
cant results, without any preference in terms of direction 
(either significantly positive or negative). Finally, an inter-
mediate impact level was found with publication bias 
selecting studies with statistically significant effects in the 
correct direction. It should be noted that other types of 
bias may have an impact on the reliability of the results of 
the methods tested here, in particular biases in the indi-
vidual experiments included in the first-order MAs.
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Based on our results, we can make the following rec-
ommendations. In case of low time constraints, REMA is 
the best option because it leads to the highest probability 
of correct conclusion and the most accurate quantita-
tive estimates. In case of high time constraints, COMA is 
an attractive option because it can be used to determine 
the direction of effect without the need for data extrac-
tion. However, COMA does not allow for quantification 
of effect size and suffers from a lack of statistical power. 
Finally, in case of medium time constraint and/or when 
the effect size needs to be quantified, the SOMA method 
is a relevant choice as it allows to quantify the effect size 
with low bias and high precision. However, it is impor-
tant to keep in mind that, in the case of high redundancy 
between first-order MAs, the confidence intervals com-
puted by SOMA are too optimistic and increase the risk 
of false discovery. Obviously, the quality of the results 
of these methods depends on the quality of the first-
order MAs. In particular, the use of biased MAs can 
have an impact on the reliability of the conclusions and 
it is therefore important to ensure that the selected first-
order MAs are of a good level of quality by using explicit 
quality criteria, such as those proposed by Shea et al. [27] 
or Beillouin et al. [2].
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