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METHODOLOGY

Novel tools and methods for designing 
and wrangling multifunctional, 
machine‑readable evidence synthesis databases
Neal R. Haddaway1,2,3*  , Charles T. Gray4 and Matthew Grainger5

Abstract 

One of the most important steps in the process of conducting a systematic review or map is data extraction and the 
production of a database of coding, metadata and study data. There are many ways to structure these data, but to 
date, no guidelines or standards have been produced for the evidence synthesis community to support their produc-
tion. Furthermore, there is little adoption of easily machine-readable, readily reusable and adaptable databases: these 
databases would be easier to translate into different formats by review authors, for example for tabulation, visualisa-
tion and analysis, and also by readers of the review/map. As a result, it is common for systematic review and map 
authors to produce bespoke, complex data structures that, although typically provided digitally, require considerable 
efforts to understand, verify and reuse. Here, we report on an analysis of systematic reviews and maps published by 
the Collaboration for Environmental Evidence, and discuss major issues that hamper machine readability and data 
reuse or verification. We highlight different justifications for the alternative data formats found: condensed databases; 
long databases; and wide databases. We describe these challenges in the context of data science principles that can 
support curation and publication of machine-readable, Open Data. We then go on to make recommendations to 
review and map authors on how to plan and structure their data, and we provide a suite of novel R-based functions 
to support efficient and reliable translation of databases between formats that are useful for presentation (condensed, 
human readable tables), filtering and visualisation (wide databases), and analysis (long databases). We hope that our 
recommendations for adoption of standard practices in database formatting, and the tools necessary to rapidly move 
between formats will provide a step-change in transparency and replicability of Open Data in evidence synthesis.
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Background
Why databases are integral to evidence syntheses
One of the most important steps in the process of con-
ducting a systematic review or map is data extraction: 
locating and abstracting information and study findings 
from within each manuscript and entering these data 
into a specifically designed database. Methodological 
guidance for systematic reviews and maps advocates that 

these databases should be predesigned and planned from 
the outset to maximise consistency, efficiency and objec-
tivity in how data are extracted [1]. However, systematic 
review authors (referred to hereafter as evidence ‘synthe-
sists’) typically design databases from scratch for each 
review project, and there has been no attempt to stand-
ardise systematic review data formats. Whilst systematic 
review management tools (e.g. CADIMA; [2]) each have 
their own standard format for storing and exporting data 
extracted within a systematic review or systematic map, 
there is no effort to ensure consistency across tools.
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Furthermore, there is little adoption of easily machine-
readable, readily reusable and adaptable databases. Pro-
viding digital versions of review or map does not mean 
that these data are easily understandable, or provided in 
a format that can be readily reused without considerable 
time and effort needed to ‘wrangle’ the data into a usable 
format. Review and map databases that are provided in a 
consistent and clear format that obeys certain standards 
and rules would be easier to translate into different for-
mats: not only by review authors themselves (for example 
when producing narrative tables, visualisations and con-
tinuing to data analysis) but also by readers of the review/
map if they wish to interrogate the data, replicate the 
analyses or reuse data for other purposes.

There are many ways to structure data, from graph 
databases [3], delimited text format, to json files [4]. As 
evidence synthesists, it is often not possible to select 
a database format that will be optimal for all use cases. 
Instead, we suggest that the structure the data takes 
should be carefully considered and planned. Our pur-
pose here is to delineate between structured (i.e. readily 
machine readable) and visualised (i.e. human readable) 
data. We believe that both formats are important; and, 
in particular, stress that human readable tables are 
not sufficient for computational reproducibility and 
interoperability.

Efforts have been made to define best practice in com-
putational work with data; a researcher may adhere to, 
for example, FAIR (findable, accessible, interoperable, 
and reusable) principles [5], or the TRUST (transparency, 
responsibility, user focus, sustainability, technology) 
principles for digital repositories [6], but precisely how to 
implement these principles with the tools available for a 
given discipline is left to the researcher.

As the drive towards Open Science and Open Synthe-
sis picks up pace [7, 8], consistency in the way the Open 
Data (the immediate publication of full research data 
free-of-charge; [9]) are presented is important to max-
imise transparency, usability and legacy of data from evi-
dence syntheses.

In evidence synthesis, there are very sensible rea-
sons to structure a data table by study, so that a reader 
can easily read and summarise vertically, horizontally, 
between studies, and within sub-tables. This structure 
is optimised for the reader, but it is a significant barrier 
to the extensibility or reuse of the research, now consid-
ered a best practice in scientific computing [10]. Wilson 
et  al. [11] suggest that we should aim for ‘good enough’ 
practices. As such, it is likely a researcher reading this 
manuscript would not be trained in databases, but, like 
the authors, would be an evidence synthesist, wanting 
to ensure they practice science diligently. In order to 
bridge this toolchain (i.e. a set of programming tools) 

gap between best practices in scientific computing and 
evidence synthesists’ practice, we provide some exam-
ples of data structures and tools. Our central focus is to 
underscore that the choice of data structure for publica-
tion should be a fundamental component of the review 
project planning—outlined in the review protocol—and 
authors should ensure that: (1) the data are provided in 
a machine-readable format with human-readable sum-
maries; and (2) the structure is clearly documented (i.e. 
the data provided are described and explained in detailed 
meta-data).

Why we should care about good data curation and Open 
Data
The Open Science movement has been instrumental in 
raising awareness and interest in the benefits of Open 
Data across disciplines [12]. Open Science has recently 
been applied specifically to evidence synthesis via the 
concept of Open Synthesis [7]. Various benefits to Open 
Data have been cited, including: increasing opportuni-
ties for reuse and further analysis (reducing research 
waste; [13]); facilitating real-time sharing and use of data 
[14]; increasing research visibility, discovery, impact and 
recognition [15]; facilitating research validity through 
replication and verification [16]; decreasing the risk of 
research fraud through transparency [17]; use of real 
research in educational materials [17]; facilitating collab-
orative research and reducing redundancy and research 
waste across siloed groups [18]; enabling public under-
standing [18]; increased potential to impact policy [19]; 
promotion of citizen science [20]. These benefits are the 
same for Open Data in evidence synthesis (i.e. systematic 
reviews and maps). Indeed, synthesists are often plagued 
by incomplete reporting of data and meta-data in pri-
mary studies [21]: we should therefore be keenly aware of 
our mandate to ensure we comply with Open Data prin-
ciples for the same reasons.

Systematic reviews and maps involve the management 
of large, complex datasets, often with multiple depend-
encies and nesting: for example, multiple outcomes for a 
single intervention, multiple interventions within a single 
study, multiple studies within a single manuscript, and 
multiple manuscripts on single studies. Added to this, 
synthesists must comply with strict demands for rig-
our in the way data extraction is planned, executed and 
reported (e.g. the MECCIR standards for conduct of sys-
tematic reviews; https​://onlin​elibr​ary.wiley​.com/page/
journ​al/18911​803/homep​age/autho​r-guide​lines​). Careful 
data curation in evidence synthesis is vital to avoid errors 
that easily propagate and threaten the validity of these 
substantial projects: particularly where multiple synthe-
sists are working on the same evidence base simultane-
ously and over long time periods that frequently involve 

https://onlinelibrary.wiley.com/page/journal/18911803/homepage/author-guidelines
https://onlinelibrary.wiley.com/page/journal/18911803/homepage/author-guidelines
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staff turnover. Where used, systematic review manage-
ment tools (e.g. SysRev.com) have come a long way to 
reduce unnecessary errors, but there remains no con-
sistent approach to data extraction across platforms that 
hampers Open Synthesis [7].

Objectives
As described above, most systematic reviews and maps 
design bespoke data extraction tools. These databases 
obviously share similarities, for example citation infor-
mation, study year, location, etc., and there are necessary 
differences depending on the focus of the review. How-
ever, each database uses different conventions related to 
column names, cell content formatting and structure. 
Because of the lack of templates across the evidence syn-
thesis community, synthesists often learn the hard way 
that databases designed for data extraction are often not 
suitable for immediate visualisation or analysis. In addi-
tion, data cannot be readily combined across databases, 
meaning that overlapping reviews cannot share resources 
in data extraction.

We outline below several common problems with sys-
tematic review and map databases, and then go on to 
describe how adopting a standard template for database 
design can help synthesists to wrangle their data auto-
matically for rapid visualisation and analysis, whilst also 
facilitating Open Data principles. We have the follow-
ing objectives that sit within a broader theory of change 
related to improved data management in evidence 
syntheses:

•	 to provide recommendations in data formatting and 
propose a methodology for designing evidence syn-
thesis databases.

•	 stimulate the production of tools to allow rapid refor-
matting of data between types suitable for reading 
and types suitable for analysis.

•	 to support Open Synthesis as a community, facilitat-
ing synthesis and reuse of syntheses.

•	 improve the legacy and impact of syntheses in the 
future.

Here, we provide one solution to the current problem 
of messy data: ‘structured’ databases, in which data are 
shared in tables wherein each row denotes an observa-
tion and each column a variable [33], and a series of 
context-agnostic tools to translate databases between dif-
ferent formats for specific uses. Although we focus here 
on systematic review and map databases, our tools and 
recommendations are equally applicable to any form of 
evidence synthesis and usable in any form of database.

There are other options, for example, relational data-
bases and graph databases [22]. Many of these solutions 

will work well together (e.g. relational databases can be 
based on these principles), but what we provide here is an 
easily understandable concept that does not require spe-
cialist software or knowledge of databases. It is also based 
on principles of interoperability with the most common 
statistical and programming language, R [23]. By building 
a database using the principles described herein, users 
can effortlessly move from a data extraction phase into a 
data synthesis phase (particularly for quantitative synthe-
sis) without the need for manual (time consuming) data 
manipulation. This solution also allows a single database 
to be used for multiple types of synthesis; e.g. visualisa-
tion in flow diagrams, heat maps, evidence atlases and 
diagnostic plots as well as data analysis in meta-analysis. 
Although our examples are provided in the R coding 
environment and therefore require some basic knowl-
edge of coding, we also intend to provide user interfaces 
that allow translation of databases with no prior coding 
experience necessary.

We begin by introducing common formats for evidence 
synthesis databases, and then describe how databases 
have been designed and published in Environmental Evi-
dence. We then outline how existing data science tools 
can support efficient and transparent database design, 
translation and use. Finally, we provide recommenda-
tions and methods for designing databases and introduce 
tools for rapidly converting between formats for different 
purposes.

Evidence synthesis data formats
Broadly speaking, there are four formats for systematic 
review and map databases: ‘condensed’ formats, ‘wide’ 
formats, ‘long’ formats, and ‘wide-and-long’ formats (see 
Fig. 1).

Condensed formats are easy to comprehend, often with 
nested column headers to denote related variables. We 
have termed these ‘condensed’ because they are used in 
an attempt to both visualise the dataset in a tabular for-
mat for the reader and contain sufficient information 
to be a comprehensive dataset. They typically revolve 
around the principle of one-line-per-study, such that the 
study is implied to be the level of data independence. 
However, these databases are not readily machine read-
able (i.e. they cannot be immediately filtered, visualised 
or analysed) where multiple values exist in one cell, for 
example where studies contain multiple outcomes, and 
particularly where these outcomes were measured in dif-
ferent ways.

Where a database contains multiple columns each with 
multiple values per cell, the implicit linkages between cell 
values are assumed to apply for all values of all cells: in 
the example in Fig. 2, each of the three values in column 
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A are associated with each of the three values in column 
B:

Condensed formats are perhaps the most common 
in CEE reviews (see “The status quo in environmen-
tal evidence syntheses” section for an analysis of recent 
reviews).

Wide format databases also typically consist of each 
row as a study, but avoid multiple values in a single cell 
that hamper filtering and linking between variables by 
separating different levels of a variable across multiple 
columns. Where a database has 10 variables extracted for 
each study, and each variable has 5 possible values, the 
database would require at least 50 columns for these data. 
In order to clearly denote which columns related to the 
same variable, some form of nesting is required: visually 

this could be done by having a hierarchy of column head-
ers, but this cannot be readily read by a machine. Better 
yet, column names should follow standard naming con-
ventions to display this nesting: for example, the vari-
able ‘colour’ could be split across three columns named 
‘colour.yellow’, ‘colour.red’, and ‘colour.blue’. These 
naming conventions help to identify nesting by a human 
and machine reader. Despite not having multiple values 
per cell, wide formats can still suffer from linkage issues 
where multiple independent data are coded within a sin-
gle line.

Long format databases obey the principle of each row 
being an independent data point. This is typical where 
a study has only one independent set of data (e.g. one 
method, one outcome, one time period), but will often 
involve multiple rows per study. Long databases need to 
track the relationships between rows carefully, and typi-
cally do this by using identification codes to denote a par-
ticular article, study, location, etc. within which multiple 
data points are nested. Careful naming conventions are 
still important for these databases, but each column will 
contain all levels of a variable, with multiple levels split 
across different lines, so naming is simpler.

Wide-and-long formats are a combination of wide and 
long database formats: for example, they will have a sin-
gle line per outcome but different factors of a variable 
will be split across multiple columns.

The various advantages and disadvantages of each data-
base format are outlined in Table 1.

Fig. 1  Conceptual model of condensed, wide and long database formats in systematic reviews and maps

Fig. 2  Multiple values held within a single row across two columns 
make it impossible to discern implicit linkages between specific 
values. All values in one column are linked with all values in the other
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The status quo in environmental evidence 
syntheses
We undertook an analysis of all systematic reviews and 
maps published by the Collaboration for Environmental 
Evidence between May 2012 and May 2019 to investigate 
how synthesists have structured their databases and to 
what extent the information is reusable. We identified all 

reviews and maps by hand searching the journal Environ-
mental Evidence (on 05/05/19). We then examined each 
review and extracted the meta-data outlined in Table 2. 
This information was checked by a second reviewer.

We identified a total of 29 systematic reviews and 
18 systematic maps (see Additional file 1). A total of 44 
of these 47 syntheses provided a digitised database of 

Table 1  Advantages and disadvantages of the main database formats for evidence syntheses

data.format Advantages Disadvantages

Condensed Easier to read and navigate (smaller, easier to scan, fits in a manu-
script)

Easy to enter data into
Easy to understand (nested columns show relationships)
No unnecessary blank spaces (avoids confusion)

Cannot be fed directly into visualisation or analysis
Difficult to convert to wide or long format
Easier to make/mask errors because of compressed information
Cannot link multiple values across columns
Cannot filter by multiple cell values

Wide Avoids repeated information
Easier to understand from a review perspective (one line per 

study)
May feel easier to fill in (left-to-right)
Easy to filter
Easy to convert to long format

Requires careful naming conventions to demonstrate column 
nesting

May be difficult to understand columns
Lots of blank spaces
Difficult to read on a landscape screen
Requires wrangling for most visualisations and data analysis

Long Easier to read than wide
Designed for immediate visualisation and data analysis
Easy to filter
Easier to understand columns than wide format
Easy to convert to wide format

Contains considerable repetition
Difficult to read and navigate
May be harder to fill in (requires a lot of scrolling)
Does not require complex naming conventions (no nesting)
No unnecessary blank spaces

Wide-and-long Combines the advantages of both wide and long
Enables between and within variable comparison
Computationally efficient
Closer to a conventional human readable table, as shown in Fig. 1

Embedded variables can be difficult to extract
Embedded variables are frequently time consuming to extract

Table 2  Meta-data extracted from CEE systematic reviews and maps published between May 2012 and May 2019

column_title Description

review_title Title of the review (with hyperlink)

Citation journal_name year volume:article number

pubilcation_date Date of publication according to EEJ

review_type Systematic review or systematic map

database_provided Was a database of studies and descriptive information provided as an additional file? 1 = yes, 0 = no

file_format The format of the database file

data_as_rows_variables_as_columns Is the data organised such that independent data points (e.g. studies) are rows and variables are columns? 
1 = yes, 0 = no

multiple_values_per_cell Are there any occurrences where cells contain more than one value? 1 = yes, 0 = no

potential_linking_issue Are there any occurrences where cells contain more than one value across multiple variables? 1 = yes, 0 = no

format_condensed Is the database arranged in a condensed format? See manuscript for full description? 1 = yes, 0 = no

format_wide Is the database arranged in a wide format? See manuscript for full description? 1 = yes, 0 = no

format_long Is the database arranged in a long format? See manuscript for full description? 1 = yes, 0 = no

format_wideandlong Is the database arranged in a wide-and-long format? See manuscript for full description? 1 = yes, 0 = no

format_multiple Are multiple database formats provided? 1 = yes, 0 = no

value_separator Data separator used to indicate break between multiple values in a cell

multiple_separators_per_table Are different separators used within the same data table? 1 = yes, 0 = no

multiple_separators_per_cell Are different separators used within the same column? 1 = yes, 0 = no

Notes Further comments on data formatting

database_link The URL for the main database file
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studies (either as a map database or as a table of data 
used in quantitative synthesis): only 2 databases did not 
employ a studies-as-rows principle, instead opting for 
studies as columns. Of the 44 synthesis databases, 32 
were in a spreadsheet format, 5 were Microsoft Access 
databases, 3 were PDFs (portable document format), and 
4 were Microsoft Word documents. A total of 28 synthe-
ses used condensed format databases, 3 were wide, 14 
were long, 2 was wide-and-long, 4 were relational for-
mats, and 5 provided multiple formats (syntheses that 
used multiple formats are also counted in individual cat-
egories) (see Fig. 3).

We noted several other issues that would cause prob-
lems in machine readability, most commonly that 11 syn-
theses used multiple different separators for cell values, 
for example combining commas and semicolons in the 
same database. Furthermore, 6 databases included mul-
tiple separators in the same column. In one case, coding 
was used inconsistently within the same column, with the 
same codes being described using different grammar and 
spelling [24]. Some authors avoided multiple cell values 
by using ‘multiple’ as a cell content, with inherent loss of 
information (e.g. [25, 26]). One synthesis provided the 
database in a Microsoft Word format with its contents 
available as image files, and thus entirely non-machine 
readable [27].

Human readability is classified as both an advantage 
and disadvantage. Data structure for human interpre-
tation has benefits for summary between and within 
studies, but it poses significant disadvantages for incor-
porating into future analyses and codeflows. Extracting 
embedded variables that have been summarised into one 

column or row presents an ongoing obstacle for evidence 
synthesists. The combined use of value separators makes 
it very challenging to extract single values from a column 
of a condensed database, particularly where responses are 
free text strings and may contain common value separa-
tors, like commas, semicolons or slashes.

A structured revolution for systematic review 
and map data
How to structure data in systematic reviews/maps
Systematic review authors can easily integrate standard 
structured data principles when designing and publish-
ing their databases. We provide the following advice on 
designing and using databases within systematic reviews 
and maps:

•	 Systematic review authors should consider publish-
ing databases of descriptive information about the 
included studies (similar to a systematic map data-
base; a list of included studies along with their meta-
data—i.e. not just the study findings but all other 
extracted descriptive information alongside each 
study citation): this is rarely done but increases the 
utility of the review’s contents, by allowing users to 
learn about the nature of the evidence base as well as 
its findings.

•	 Provide detailed explanatory notes that describe the 
column titles, and the database structure and con-
ventions in a data dictionary file or tab of the data-
base worksheet. Within reason, this information 
should ideally be sufficient to understand the data 
without needing to carefully read the manuscript.

Fig. 3  Database formats used in systematic reviews and maps published in Environmental Evidence between 01/05/12 and 04/05/19. Syntheses 
that used multiple formats are also counted in individual categories
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•	 Clearly explain what level of independent data has 
been used in the database: i.e. what is each row in 
your dataset (a manuscript, a study, a location, an 
outcome?).

•	 Facilitate computational transformation (i.e. immedi-
ate use of the database in a visualisation or statistical 
programme) by avoiding multiple values per cell and 
by using appropriate naming conventions for column 
names (see Box  1 and “snake_case naming conven-
tion for column/variable names”, below).

•	 Where there is a need for linkages between multiple 
values across multiple cells, separate data onto differ-
ent lines and describe this clearly.

•	 Become familiar with data wrangling tools to trans-
form between wide and long formats.

•	 Consider providing multiple formats of a database 
that allow rapid reading by a human and immediate 
machine readability.

Translatable data
Standardised formats for database design and naming 
conventions
Whilst there are a range of naming conventions and 
options for database structures in systematic reviews, 

we propose the following practices to act as a standard 
across the community to maximise efficiency, reuse and 
training.

Differentiate between databases for visualisation 
and databases for analysis
The evidence synthesis community should delineate 
between making databases visually appealing for rapid 
understanding, versus databases that can be reused and 
immediately machine read. This should not require dou-
ble the work: here, we advocate for a single, planned 
database designed for data extraction that can be wran-
gled into a variety of formats for different purposes using 
computational methods.

Synthesists should consider including both visual data-
bases for human-readable tables and machine-readable 
data tables for analysis and replication: synthesists are 
already encouraged to provide condensed tables in a nar-
rative synthesis (Collaboration for Environmental Evi-
dence 2018). However, we believe that all tables should 
be provided in a digital, machine readable format as well 
as providing in-text tables to maximise legacy and impact 
of their work.

Box 1  How naming conventions can support tidy databases for evidence syntheses
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Avoid multiple values per cell
Along with human-readable tables, synthesists should 
also provide either a wide or long (or wide-and-long) for-
mat database as an Additional file 1. There should ideally 
be a move away from the preference for providing only a 
condensed format that compresses multiple values into a 
single cell. Despite being visually appealing and easy to 
populate, these are difficult to interact with.

snake_case naming convention for column/variable 
names
‘Naming conventions’ are consistent ways of naming 
variables in a database that make it easier to recognise 
and use variable names in software languages like R and 
Python. In essence these are sets of rules for describing 
variables that cannot be easily named using single unique 
words or short strings. They are necessary because spaces 
within a variable name cause problems for tools that 
automatically detect where one entity stops and another 
begins. For example, the variable “study location” would 
ideally be converted into a single string. This could be 
done using a range of separators to make it easier for the 
human coder to use: studloc, study.location, study_loca-
tion, studyLocation, study-location, etc. Naming conven-
tions also facilitate automatic wrangling of data and make 
it easier to produce Open Source software to switch 
between database formats.

There are many different naming conventions; for 
example, camelCase, snake_case, kebab-case, 
SCREAMINGCASE, and combinations thereof [28]. Our 
examples below focus on the statistical programming 
language R, in which there is a convention of separating 
words with a full stop: for example, read.csv. How-
ever, this creates problems in other languages; in Python, 
full stops have additional language-specific functionality 
and create problems when used as variable names. Thus, 
current best practice is to use snake_case—lower 
case and separate words with an underscore [29]—thus 
improving interoperability.

•	 Consistency in whichever approach is chosen

	 Whatever database format and naming convention is 
chosen, synthesists should ensure that they use this 
consistently and do not use multiple formats within a 
single database (e.g. combining naming conventions 
or being inconsistent in the use of wide and long for-
mats).

•	 Develop and use tools to translate between database 
formats

We have developed a series of tools to support database 
translation in line with the principles described herein. 
We also provide a number of ‘toolchain walkthroughs’ 
combining existing functions together that demonstrate 
how they can be applied in practice to existing databases 
(https​://softl​oud.githu​b.io/sysre​vdata​/). We describe the 
relative roles of each format and example code for con-
verting between them here. These methods combine 
existing code to wrangle data between formats com-
monly seen in systematic reviews and maps. The code 
is freely accessible and adaptable (i.e. published under 
CC-BY license), and may also be a useful basis for the 
production of Open Source tools with user interfaces to 
maximise usability by those with limited coding skills.

In our toolchain walkthroughs, we provide exam-
ples of restructuring data to illustrate the nuances and 
challenges of effectively sharing data for evidence syn-
thesis. Communicating data effectively with collabora-
tors and other scientists is not easy, see, for example, a 
recent retraction (https​://lasko​wskil​ab.facul​ty.ucdav​
is.edu/2020/01/29/retra​ction​s), time for the development 
of required research software must increasingly be fac-
tored into the research plan. That being said, best practice 
in scientific computing is so challenging that best prac-
tices was updated to the more realistic good enough prac-
tices [11]. We are thus not claiming that our solutions are 
perfect, but rather fit-for-purpose, and act as a vital start-
ing point for further development and optimisation. No 
doubt, code may need adapting for specific contexts, par-
ticularly where data has not been structured efficiently 
from the start.

Here, we provide a few examples (see the walkthrough 
for all examples) to give a sense of the type of problems 
one might encounter when structuring data for computa-
tional evidence synthesis. These examples are visualised 
for clarity in Fig. 4 with the example from Fig. 2.

Example 1  Separating multiple values per cell onto sep-
arate lines (condensed-to-long)

The following function makes use of the separate_
rows() function in the ‘tidyr’ package [30] to split rows 
where a specific column has multiple values per cell into 
different lines. The default separator used below is ‘|||’, as 
used in the free-to-use review management tool SysRev 
(http://sysre​v.com). This solution is an example of the 
type of bespoke wrapper code that can be created using 
existing tools, such as the metapackages ‘metaverse’ and 
‘tidyverse’. Note that though brief, the syntax of each 
of the tools may take time to familiarise oneself with. 
This function accepts a dataframe, and splits multiple 

https://softloud.github.io/sysrevdata/
https://laskowskilab.faculty.ucdavis.edu/2020/01/29/retractions
https://laskowskilab.faculty.ucdavis.edu/2020/01/29/retractions
http://sysrev.com
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values (separated by ‘|||’) within a given column into 
rows, duplicating all other information in the dataframe 
for that row. The backslashes are necessary ‘escape char-
acters’ to tell R that ‘|’ does not have a purpose other than 
being a character in the string. See Fig. 4a for a hypothet-
ical run-through.

Fig. 4  Hypothetical examples of the translations possible using the code outlined in the three examples given in the text
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Example 2  Pivot from one row per level of a variable to 
one column per level of a variable (long-to-wide)

This function takes the long version of the database and 
converts each unique level of a variable into a column, 
and populates the resulting columns for rows with cor-
responding codes. It makes use of the pivot_wider() func-
tion from the ‘tidyr’ package [30]. The resultant database 
has one line per study, and each column is prefixed by 
the original column name for clarity. The to_snake_case() 
function from the ‘snakecase’ package [31] converts the 
column names into snake_case (i.e. words separated by 
underscores). See Fig. 4b for a hypothetical run-through.

use by other researchers (and their future selves). They 
should document this structure with a data dictionary, by 
stating what each column in a table refers to, and what 
each row defines. Synthesists should not be afraid to pro-
vide multiple tables, that is, a collection of tables. They 
should provide details as to what information each table 
provides, and how they connect to each other (which 
variables are common or primary keys). As the evidence 
synthesis community is still relatively unaware of data 
structures, consider providing readers with at least one 
resource on data structures; for example, entry-level texts 
such as ‘R Packages’ [32] and the seminal ‘Tidy Data’ [33] 
may be appropriate.

Example 3  Compressing multiple columns into a con-
densed format (wide-to-condensed)

The following function makes use of the ‘tidyr’ package 
[30] function unite() to take a wide database, consisting 
of one column per value of a variable, with different vari-
ables indicated by a column name prefix (e.g. ‘column1_’), 
and produces a condensed table, with multiple values 
per cell, separated by ‘;’ (demonstrating that the user 
can easily alter the delimiting separator within a trans-
lation process). The output retains the same number of 
rows as the wide dataframe. See Fig. 4c for a hypothetical 
run-through.

Documentation and resources (data dictionary)
Whatever choices evidence synthesists make in design-
ing their databases, they should structure their data for 

Conclusions
It is clear from the literature that Open Data and Open 
Synthesis bring a range of benefits to the research com-
munity and evidence users [7, 34–39]. The way in which 
we secure this Open Synthesis future, however, is up for 
debate. Our tools aim to facilitate a pathway to a clear 
and easy future for Open Syntheses by establishing 
standard practices in the design and publication of data-
bases of evidence produced within systematic review and 
map projects. We summarise our key recommendations 
in Table 3.

We appreciate that changing practices across a com-
munity will not be an easy task, with a potentially steep 
learning curve, issues around a lack of awareness, and 
resistance to change. However, we believe that these 
obstacles can be easily overcome by providing templates 
and tools that allow users to design, use and publish data-
bases with ease (https​://softl​oud.githu​b.io/sysre​vdata​/). 
Indeed, by embracing standard approaches to database 
design, we believe that the job of producing and using 
databases can be made far easier through automation 
tools (e.g. using EviAtlas; [40]). We eagerly anticipate 
future toolchain walkthroughs that provide subdisci-
pline- or tool-specific code for structuring data for evi-
dence synthesis.

Future work is needed to develop resources to sup-
port awareness raising and adoption of these tidy data 

https://softloud.github.io/sysrevdata/


Page 11 of 12Haddaway et al. Environ Evid            (2021) 10:5 	

principles, and efforts are underway to produce these. 
Simultaneously, digital tools are needed to allow syn-
thesists to immediately convert between human- and 
machine-readable formats, and between different 
machine-readable formats (i.e. long to wide) for differ-
ent purposes. In addition, systematic review and map 
databases should be static and unchanged unless accom-
panied by clear methodological justification and report-
ing via a registered and peer-reviewed protocol and 
final report: these are the central principles of rigorous 
evidence synthesis. However, the advent of living sys-
tematic reviews [41] (and maps) implies the need for 
guidance and procedures on how databases should be 
updated transparently and reliably. Clear versioning may 
be the solution, but this is outside our intended scope 
and should be tackled by the living evidence synthesis 
community.

However, these tools will only be useful if the commu-
nity of evidence synthesists embraces the need for con-
sistency, the need for Open Data and Open Synthesis 
and the benefits for tidy systematic review and map data-
bases. In doing so, we can maximise the efficiency of the 
conduct, updating and upgrading of evidence syntheses.
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