Pimentel D, Lach L, Zuniga R, Morrison D. Environmental and economic costs of nonindigenous species in the United States. Bioscience. 2000;50:53–65.
Article
Google Scholar
Pimentel D. Biological invasions: economic and environmental costs of alien plant, animal, and microbe species. Boca Raton: CRC Press; 2002.
Book
Google Scholar
Gren IM, Isacs L, Carlsson M. Costs of alien invasive species in Sweden. Ambio. 2009;38(3):135–40.
Article
Google Scholar
Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, et al. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett. 2011;14:702–8.
Article
Google Scholar
Blackburn TM, Essl F, Evans T, Hulme PE, Jeschke JM, Kühn I, et al. A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biol. 2014;12:e1001850.
Article
Google Scholar
Capinha C, Essl F, Seebens H, Moser D, Pereira HM. The dispersal of alien species redefines biogeography in the Anthropocene. Science. 2015;348:1248–51.
Article
CAS
Google Scholar
Van Kleunen M, Dawson W, Essl F, Pergl J, Winter M, Weber E, et al. Global exchange and accumulation of non-native plants. Nature. 2015;525:100–3.
Article
Google Scholar
Schindler S, Staska B, Adam M, Rabitsch W, Essl F. Alien species and public health impacts in Europe: a literature review. NeoBiota. 2015;27:1.
Article
Google Scholar
EC (European Commission). The mid-term review of the EU biodiversity strategy to 2020. Brussels. COM(2015)478.
Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol. 2013;28:58–66.
Article
Google Scholar
Tittensor DP, Walpole M, Hill SLL, Boyce DG, Britten GL, Burgess ND, et al. A mid -term analysis of progress towards international biodiversity targets. Science. 2014;346:241–4.
Article
CAS
Google Scholar
Essl F, Dullinger S, Rabitsch W, Hulme PE, Hülber K, Jarosik V, et al. Socioeconomic legacy yields an invasion debt. Proc Nat Acad Sci. 2011;108:203–7.
Article
CAS
Google Scholar
Caminade C, Medlock JM, Ducheyne E, McIntyre KM, Leach S, Baylis M, Morse AP. Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J R Soc Interface. 2012;9:2708–17.
Article
Google Scholar
Dobson A, Barker K, Taylor SL. Biosecurity. The socio-politics of invasive species and infectious diseases. Oxon (NY): Earthscan, Routledge; 2013.
Essl F, Dullinger S, Kleinbauer I. Changes in the spatio-temporal patterns and habitat preferences of Ambrosia artemisiifolia during its invasion of Austria. Preslia. 2009;81:119–33.
Google Scholar
Vilà M, Basnou C, Pyšek P, Josefsson M, Genovesi P, Gollasch S, et al. How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front Ecol Env. 2010;8:135–44.
Article
Google Scholar
Ziska LH, Knowlton K, Rogers C, Dalan D, Tierney N, Elder MA, et al. Recent warming by latitude associated with increased length of ragweed pollen season in central North America. Proc Nat Acad Sci. 2011;108:4248–51.
Article
CAS
Google Scholar
Bullock J, Chapman D, Schaffer S, Roy D, Girardello M, Haynes T, et al. Assessing and controlling the spread and the effects of common ragweed in Europe. Report no ENV.B2/ETU/2010/0037. European Commission; 2012.
Essl F, Biró K, Brandes D, Broennimann O, Bullock JM, Chapman DS, et al. Biological Flora of the British Isles: Ambrosia artemisiifolia. J Ecol. 2015;103:1069–98.
Article
Google Scholar
Baker R, Caffier D, Choiseul JW, De Clercq P, Simon ED, Gerowitt B, et al. Opinion of the Scientific Panel on plant health on a request from the commission on the pest risk assessment made by Poland on Ambrosia spp. EFSA J. 2007:528;1–32. doi:10.2903/j.efsa.2007.528.
Google Scholar
Brandes D, Nitzsche J. Verbreitung, Ökologie und Soziologie von Ambrosia artemisiifolia L. in Mitteleuropa. Tuexenia. 2007;27:167–94.
Google Scholar
Fumanal B, Chauvel B, Bretagnolle F. Estimation of pollen and seed production of common ragweed in France. Ann Agri Env Med. 2007;14:233–6.
Google Scholar
Weaver SE. Impact of lamb’s-quarters, common ragweed and green foxtail on yield of maize and soybean in Ontario. Can J Plant Sci. 2001;81:821–8.
Article
Google Scholar
Cowbrough MJ, Brown RB, Tardif FJ. Impact of common ragweed (Ambrosia artemisiifolia) aggregation on economic thresholds in soybean. Weed Sci. 2003;51:947–54.
Article
CAS
Google Scholar
White JF, Bernstein DI. Key pollen allergens in North America. Ann Allergy Asthma Immunol. 2003;91:425–35.
Article
Google Scholar
Burbach GJ, Heinzerling LM, Edenharter G, Bachert C, Bindslev-Jensen C, Bonini S, et al. GA2LEN skin test study II: clinical relevance of inhalant allergen sensitizations in Europe. Allergy. 2009;64:1507–15.
Article
CAS
Google Scholar
Smith M, Cecchi L, Skjøth CA, Karrer G, Šikoparija B. Common ragweed: a threat to environmental health in Europe. Environ Int. 2013;61:115–26.
Article
CAS
Google Scholar
Burbach GJ, Heinzerling LM, Rohnelt C, Bergmann KC, Behrendt H, Zuberbier T. Ragweed sensitization in Europe—GA(2)LEN study suggests increasing prevalence. Allergy. 2009;64:664–5.
Article
CAS
Google Scholar
Richter R, Berger U, Dullinger S, Essl F, Vogl G. Spread of invasive ragweed: climate change, management and how to reduce allergy costs. J Appl Ecol. 2013;50:1422–30.
Article
Google Scholar
Irwin DL, Aarssen LW. Testing for cost of apical dominance in vegetation: a field study of three species. Ann Bot Fenn. 1996;33:123–8.
Google Scholar
Nitzsche J. Ambrosia artemisiifolia L. (Beifuß-Ambrosie) in Deutschland. Biologie der Art, Konkurrenzverhalten und Monitoring. Ph.D. thesis. Braunschweig, Germany: University of Braunschweig; 2010.
Simard MJ, Benoit DL. Distribution and abundance of an allergenic weed, common ragweed (Ambrosia artemisiifolia L.), in rural settings of southern Québec, Canada. Can. J Plant Sci. 2010;90:549–57.
Google Scholar
Patracchini C, Vidotto F, Ferrero A. Common ragweed (Ambrosia artemisiifolia) growth as affected by plant density and clipping. Weed Tech. 2011;25:268–76.
Article
Google Scholar
Bohren C, Mermillod G, Delabays N. Common ragweed (Ambrosia artemisiifolia L.) in Switzerland: development of a nationwide concerted action. J Plant Dis Protect. 2006;XX:497–503.
Google Scholar
Karrer G, Milakovic M, Kropf M, Hackl G, Essl F, Hauser M, et al. Ausbreitungsbiologie und Management einer extrem allergenen, eingeschleppten Pflanze—Wege und Ursachen der Ausbreitung von Ragweed (Ambrosia artemisiifolia) sowie Möglichkeiten seiner Bekämpfung. Final Report. Vienna (Austria): BMLFUW; 2011.
Milakovic I, Fiedler K, Karrer G. Management of roadside populations of invasive Ambrosia artemisiifolia by mowing. Weed Res. 2014;54:256–64.
Article
Google Scholar
Buttenschøn RM, Waldispühl S, Bohren C. Guidelines for management of common ragweed, Ambrosia artemisiifolia. EUPHRESCO project AMBROSIA 2008–09. 2009. http://http://ragweed.eu/guidelines-for-management-of-common-ragweed-ambrosia-artemisiifolia-euphresco-2009. Accessed 20 Oct 2015.
Cartwright RD, Templeton GE. Biological limitations of Protomyces gravidus as a mycoherbicide for giant ragweed. Ambrosia trifida. Plant Dis. 1988;72:580–2.
Article
Google Scholar
Teshler MP, DiTommaso A, Gagnon JA, Watson AK. Ambrosia artemisiifolia L., common ragweed (Asteraceae). In: Huber JT, editor. Biological Control Programmes in Canada. New York (NY): CABI Publishing; 2002. p. 290–4.
Gerber E, Schaffner U, Gassmann A, Hinz HL, Seier M, Müller-Schärer H. Prospects for biological control of Ambrosia artemisiifolia in Europe: learning from the past. Weed Res. 2011;51:559–73.
Article
Google Scholar
Palmer WA, Heard T, Sheppard AW. A review of Australian classical biological control of weeds programs and research activities over the past 12 years. Biol Control. 2010;52:271–87.
Article
Google Scholar
Zhou ZS, Guo JY, Chen HS, Wan FH. Effects of temperature on survival, development, longevity, and fecundity of Ophraella communa (Coleoptera: chrysomelidae), a potential biological control agent against Ambrosia artemisiifolia (Asterales: Asteraceae). Physiol Ecol. 2010;39:1021–7.
Google Scholar
Béres I. Integrated weed management strategies of Ambrosia artemisiifolia. Magyar Gyomkutatás és Technológia. 2004;1:3–14.
Google Scholar
Kazinczi G, Béres I, Novák R, Biró K, Pathy Z. Common Ragweed (Ambrosia artemisiifolia). A review with special regards to the results in Hungary. III. Resistant biotopy, control methods and authority arrangements. Herbologia. 2008;9:119–44.
Google Scholar
Kukorelli G, Reisinger P, Torma M, Adamszki T. Experiments with the control of common ragweed in imidazolinone-resistant and tribenuron-methyl-resistant sunflower. Herbologia. 2011;12:15–22.
Google Scholar
EU (European Union). Commission Regulation (EU) No 744/2012 of 16 August 2012 amending Annexes I and II to Directive 2002/32/EC of the European Parliament and of the Council as regards maximum levels for arsenic, fluorine, lead, mercury, endosulfan, dioxins, Ambrosia spp., diclazuril and lasalocid A sodium and action thresholds for dioxins. Off J Eur Union 2012;L219:5–12.
Kovalev OV. Modern outlooks of biological control of weed plants in the USSR and the international phytophagous exchange. In: Dunn PH, editor. Second International Symposium on Biological Control of Weeds, Rome, Italy. Slough: Commonwealth Agricultural Bureaux, Farnham Royal; 1971:166–72.
Reznik SY, Spasskaya IA, Dolgovskaya MY, Volkovitsh MG, Zaitzev VF. The ragweed leaf beetle Zygogramma suturalis F. (Coleoptera: Chrysomelidae) in Russia: current distribution, abundance and implication for biological control of common ragweed, Ambrosia artemisiifolia L. In: Julien MH, Sforza R, Bon MC, Evans HC, Hatcher PE, Hinz HE, Rector BG, editors. 7th International Symposium on Biological Control of Weeds. Wallingford: CAB International; 2007:614–9.
Karrer G, Pixner T. The contribution of post-harvest ripened ragweed seeds after cut for control. In: GEIB, editor. NEOBIOTA: Halting Biological Invasions in Europe: from Data to Decisions, 7th European Conference on Biological Invasions. León, Spain: GEIB; 2012:229.
Meiss H. Diversifying crop rotations with temporary grasslands: potentials for weed management and farmland biodiversity. Ph.D. thesis, Giessen, Germany: 2010.
Murphy SD, Clements DR, Belaoussoff S, Kevan PG, Swanton CJ. Promotion of weed species diversity and reduction of weed seedbanks with conservation tillage and crop rotation. Weed Sci. 2006;54:69–77.
Article
CAS
Google Scholar
Meiss H, Munier-Jolain N, Henriot F, Caneiil J. Effects of biomass, age and functional traits on regrowth of arable weeds after cutting. J Plant Dis Protect. 2008;21:493–500.
Google Scholar
Goeden RD, Andres LA. Three recent successes outside of North America. In: Fisher TW, editor. Handbook of biological control. San Diego: Academic Press; 1999. p. 884–5.
Google Scholar
Kazinczi G, Novák R (editors). A Parlagfu visszaszorításának integrált módszerei (Integrated methods for suppression of ragweed). Budapest, Hungary: National Food Chain Safety Office, Directorate of Plant Protection, Soil Conservation and Agri-Environment; 2012.
Essl F, Bacher S, Blackburn TM, Booy O, Brundu G, Brunel S, et al. Crossing frontiers in tackling pathways of biological invasions. Bioscience. 2015;65:769–82.
Article
Google Scholar
Collaboration for environmental evidence. guidelines for systematic review and evidence synthesis in environmental management. Version 4.2. Environmental Evidence 2013. http://www.environmentalevidence.org/Documents/Guidelines/Guidelines4.2.pdf.
Stevens A, Milne R. The effectiveness revolution and public health. In: Scally G, editor. Progress in public health. London: Royal Society of Medicine Press; 1997. p. 197–225.
Google Scholar
Pullin AS, Knight TM. Effectiveness in conservation practice: pointers from medicine and public health. Conserv Biol. 2001;15:50–4.
Article
Google Scholar
Rilov G, Mant R, Lyons D, Bulleri F, Benedetti-Cecchi L, Kotta J, et al. How strong is the effect of invasive ecosystem engineers on the distribution patterns of local species, the local and regional biodiversity and ecosystem functions? Environ Evid. 2012;1:10.
Article
Google Scholar
Smith EP. BACI design. In: El-Shaaraw AH, Piegorsch WW, editors. Encyclopedia of Environmetrics. Chichester: Wiley; 2002. p. 141–8.
Google Scholar
Bilotta GS, Milner AM, Boyd IL. Quality assessment tools for evidence from environmental science. Environ Evid. 2014;3:14.
Article
Google Scholar
Schindler S, Kropik M, Euller K, Bunting SW, Schulz-Zunkel C, Hermann A, et al. Floodplain management in temperate regions: is multifunctionality enhancing biodiversity? Environ Evid. 2013;2:10.
Article
Google Scholar
Haddaway NR. A call for better reporting of conservation research data for use in meta-analyses. Conserv Biol. 2015;29:1242–5.
Article
Google Scholar
Schafer JL. Analysis of incomplete multivariate data, 1st edn. Monographs on Statistics and Applied Probability, vol 72. Boca Raton: Chapman & Hall; 1997.
Book
Google Scholar
Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, et al. Terrestrial ecoregions of the world: a new map of life on earth. Bioscience. 2001;51:933–8.
Article
Google Scholar
Rubel F, Kottek M. Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorol Z. 2010;19:135–41.
Article
Google Scholar
Machado A. An index of naturalness. J Nat Conserv. 2004;12:95–110.
Article
Google Scholar
Koricheva J, Gurevitch J, Mengersen K. Handbook of Meta-analysis in Ecology and Evolution. Princeton: Princeton University Press; 2013.
Book
Google Scholar