Becker H. Pflanzenzüchtung. 2nd ed. Stuttgart: UTB; 2011.
Google Scholar
Ronald P. Plant genetics, sustainable agriculture and global food security. Genetics. 2011;188:11–20. https://doi.org/10.1534/genetics.111.128553.
Google Scholar
FAO—Committee on Agriculture (17th session). 06.03.2003. http://www.fao.org/docrep/meeting/006/y8704e.htm. Accessed 25 Sept 2018.
Xie K, Wu S, Li Z, Zhou Y, Zhang D, Dong Z, et al. Map-based cloning and characterization of Zea mays male sterility33 (ZmMs33) gene, encoding a glycerol-3-phosphate acyltransferase. Theor Appl Genet. 2018;131:1363–78. https://doi.org/10.1007/s00122-018-3083-9.
CAS
Google Scholar
Phalan B. What have we learned from the land sparing-sharing model? Sustainability. 2018;10:1760. https://doi.org/10.3390/su10061760.
Google Scholar
Stevenson JR, Villoria N, Byerlee D, Kelley T, Maredia M. Green Revolution research saved an estimated 18 to 27 million hectares from being brought into agricultural production. Proc Natl Acad Sci USA. 2013;110:8363–8. https://doi.org/10.1073/pnas.1208065110.
CAS
Google Scholar
Songstad DD, Petolino JF, Voytas DF, Reichert NA. Genome editing of plants. Crit Rev Plant Sci. 2017;36:1–23. https://doi.org/10.1080/07352689.2017.1281663.
Google Scholar
International Atomic Energy Agency (IAEA). Mutant variety database. https://mvd.iaea.org/#!Search?page=1&size=15&sortby=Name&sort=ASC. Accessed 25 Sept 2018.
Schlegel RHJ. Dictionary of plant breeding. 2nd ed. Boca Raton: CRC Press; 2009.
Google Scholar
SAM High Level Group of Scientific Advisors. New techniques in agricultural biotechnology. 2017.
Barton KA, Binns AN, Matzke AJM, Chilton M-D. Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell. 1983;32:1033–43. https://doi.org/10.1016/0092-8674(83)90288-X.
CAS
Google Scholar
Herrera-Estrella L, Depicker A, van Montagu M, Schell J. Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature. 1983;303:209–13. https://doi.org/10.1038/303209a0.
CAS
Google Scholar
Govindan G, Ramalingam S. Programmable site-specific nucleases for targeted genome engineering in higher eukaryotes. J Cell Physiol. 2016;231:2380–92. https://doi.org/10.1002/jcp.25367.
CAS
Google Scholar
European Food Safety Authority (EFSA). Scientific opinion addressing the safety assessment of plants developed using Zinc Finger Nuclease 3 and other Site-Directed Nucleases with similar function. EFSA J. 2012;10:2943.
Google Scholar
van de Wiel CCM, Schaart JG, Lotz LAP, Smulders MJM. New traits in crops produced by genome editing techniques based on deletions. Plant Biotechnol Rep. 2017;11:1–8. https://doi.org/10.1007/s11816-017-0425-z.
Google Scholar
Podevin N, Davies HV, Hartung F, Nogué F, Casacuberta JM. Site-directed nucleases: a paradigm shift in predictable, knowledge-based plant breeding. Trends Biotechnol. 2013;31:375–83. https://doi.org/10.1016/j.tibtech.2013.03.004.
CAS
Google Scholar
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4. https://doi.org/10.1038/nature17946.
CAS
Google Scholar
Nationale Akademie der Wissenschaften Leopoldina, Deutsche Forschungsgemeinschaft, acatech ‒ Deutsche Akademie der Technikwissenschaften, Union der deutschen Akademien der Wissenschaften. The opportunities and limits of genome editing. 2015.
Bömeke O, Kahrmann J, Matthies A. Detaillierte Übersicht zum regulatorischen Status der neuen molekularbiologischen Techniken (NMT) in ausgewählten Drittstaaten. https://www.bmel.de/DE/Landwirtschaft/Pflanzenbau/Gentechnik/_Texte/Neue_molekularbiologische_Techniken.html. Accessed 21 Feb 2019.
Duan Y-B, Li J, Qin R-Y, Xu R-F, Li H, Yang Y-C, et al. Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Plant Mol Biol. 2016;90:49–62. https://doi.org/10.1007/s11103-015-0393-z.
CAS
Google Scholar
Demorest ZL, Coffman A, Baltes NJ, Stoddard TJ, Clasen BM, Luo S, et al. Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC Plant Biol. 2016;16:225. https://doi.org/10.1186/s12870-016-0906-1.
Google Scholar
Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, et al. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol. 2016;17:1140–53. https://doi.org/10.1111/mpp.12375.
CAS
Google Scholar
Gocal GFW, Schöpke C, Beetham PR. Oligo-mediated targeted gene editing. In: Zhang F, Puchta H, Thomson JG, editors. Advances in new technology for targeted modification of plant genomes. New York: Springer; 2015. p. 73–89. https://doi.org/10.1007/978-1-4939-2556-8_5.
Chapter
Google Scholar
Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, et al. ARGOS8 variants generated by CRISPR–Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J. 2017;15:207–16. https://doi.org/10.1111/pbi.12603.
CAS
Google Scholar
Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol. 2014;32:947–51. https://doi.org/10.1038/nbt.2969.
CAS
Google Scholar
Martin F, Sánchez-Hernández S, Gutiérrez-Guerrero A, Pinedo-Gomez J, Benabdellah K. Biased and unbiased methods for the detection of off-target cleavage by CRISPR/Cas9: an overview. Int J Mol Sci. 2016. https://doi.org/10.3390/ijms17091507.
Altschul S, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10. https://doi.org/10.1006/jmbi.1990.9999.
CAS
Google Scholar
Bae S, Park J, Kim J-S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics. 2014;30:1473–5. https://doi.org/10.1093/bioinformatics/btu048.
CAS
Google Scholar
Lei Y, Lu L, Liu H-Y, Li S, Xing F, Chen L-L. CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant. 2014;7:1494–6. https://doi.org/10.1093/mp/ssu044.
CAS
Google Scholar
Liu H, Ding Y, Zhou Y, Jin W, Xie K, Chen L-L. CRISPR-P 2.0: an improved CRISPR–Cas9 tool for genome editing in plants. Mol Plant. 2017;10:530–2. https://doi.org/10.1016/j.molp.2017.01.003.
CAS
Google Scholar
Tycko J, Myer VE, Hsu PD. Methods for optimizing CRISPR–Cas9 genome editing specificity. Mol Cell. 2016;63:355–70. https://doi.org/10.1016/j.molcel.2016.07.004.
CAS
Google Scholar
Zischewski J, Fischer R, Bortesi L. Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol Adv. 2017;35:95–104. https://doi.org/10.1016/j.biotechadv.2016.12.003.
CAS
Google Scholar
Agapito-Tenfen SZ, Wikmark O-G. Current status of emerging technologies for plant breeding. Biosafety and knowledge gaps of site directed nucleases and oligonucleotide-directed mutagenesis. GenØk Centre for Biosafety: Tromsø; 2015.
Google Scholar
Zhang X-H, Tee LY, Wang X-G, Huang Q-S, Yang S-H. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids. 2015;4:e264. https://doi.org/10.1038/mtna.2015.37.
CAS
Google Scholar
Kanchiswamy CN, Maffei M, Malnoy M, Velasco R, Kim J-S. Fine-tuning next-generation genome editing tools. Trends Biotechnol. 2016;34:562–74. https://doi.org/10.1016/j.tibtech.2016.03.007.
CAS
Google Scholar
Collaboration for Environmental Evidence. Guidelines for systematic review and evidence synthesis in environmental management, Version 4.2. Environmental Evidence. 2013. http://www.environmentalevidence.org/Documents/Guidelines/Guidelines4.2.pd. Accessed 13 Sept 2018.
Modrzejewski D, Hartung F, Sprink T, Krause D, Kohl C, Schiemann J, Wilhelm R. What is the available evidence for the application of genome editing as a new tool for plant trait modification and the potential occurrence of associated off-target effects: a systematic map protocol. Environ Evid. 2018;7:11. https://doi.org/10.1186/s13750-018-0130-6.
Google Scholar
Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20:37–46. https://doi.org/10.1177/001316446002000104.
Google Scholar
Kohl C, McIntosh EJ, Unger S, Haddaway NR, Kecke S, Schiemann J, Wilhelm R. Online tools supporting the conduct and reporting of systematic reviews and systematic maps: a case study on CADIMA and review of existing tools. Environ Evid. 2018;7:2420. https://doi.org/10.1186/s13750-018-0115-5.
Google Scholar
Haddaway NR, Macura B, Whaley P, Pullin AS. ROSES for Systematic Map Reports. Version 1.0. 2017. https://doi.org/10.6084/m9.figshare.5897299.
Braatz J, Harloff H-J, Mascher M, Stein N, Himmelbach A, Jung C. CRISPR–Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol. 2017;174:9. https://doi.org/10.1104/pp.17.00426.
Google Scholar
Yang Y, Zhu K, Li H, Han S, Meng Q, Khan SU, et al. Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development. Plant Biotechnol J. 2018;16:1322–35. https://doi.org/10.1111/pbi.12872.
CAS
Google Scholar
Wang Y, Meng Z, Liang C, Meng Z, Wang Y, Sun G, et al. Increased lateral root formation by CRISPR/Cas9-mediated editing of arginase genes in cotton. Sci China Life Sci. 2017;60:524–7. https://doi.org/10.1007/s11427-017-9031-y.
CAS
Google Scholar
Hu B, Li D, Liu X, Qi J, Gao D, Zhao S, et al. Engineering non-transgenic gynoecious cucumber using an improved transformation protocol and optimized CRISPR/Cas9 system. Mol Plant. 2017;10:1575–8. https://doi.org/10.1016/j.molp.2017.09.005.
CAS
Google Scholar
Bertier LD, Ron M, Huo H, Bradford KJ, Britt AB, Michelmore RW. High-resolution analysis of the efficiency, heritability, and editing outcomes of CRISPR/Cas9-induced modifications of NCED4 in lettuce (Lactuca sativa). G3. 2018;8:1513–21. https://doi.org/10.1534/g3.117.300396.
CAS
Google Scholar
United States Department of Agriculture (USDA). 2015. https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/15-013-01air.pdf. Accessed 25 Aug 2018.
Huang C, Sun H, Xu D, Chen Q, Liang Y, Wang X, et al. ZmCCT9 enhances maize adaptation to higher latitudes. Proc Natl Acad Sci USA. 2018;115:E334–41. https://doi.org/10.1073/pnas.1718058115.
CAS
Google Scholar
Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol. 2015;169:931–45. https://doi.org/10.1104/pp.15.00793.
Google Scholar
Svitashev S, Schwartz C, Lenderts B, Young JK, Mark Cigan A. Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat Commun. 2016;7:1–7. https://doi.org/10.1038/ncomms13274.
Google Scholar
Li J, Zhang H, Si X, Tian Y, Chen K, Liu J, et al. Generation of thermosensitive male-sterile maize by targeted knockout of the ZmTMS5 gene. J Genet Genom. 2017;44:465–8. https://doi.org/10.1016/j.jgg.2017.02.002.
Google Scholar
Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio ML, et al. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature. 2017;542:105–9. https://doi.org/10.1038/nature20827.
CAS
Google Scholar
Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, et al. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J. 2016;14:169–76. https://doi.org/10.1111/pbi.12370.
CAS
Google Scholar
Li M, Li X, Zhou Z, Wu P, Fang M, Pan X, et al. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front Plant Sci. 2016;7:1–13. https://doi.org/10.3389/fpls.2016.00377.
Google Scholar
Shen L, Wang C, Fu Y, Wang J, Liu Q, Zhang X, et al. QTL editing confers opposing yield performance in different rice varieties. J Integr Plant Biol. 2016. https://doi.org/10.1111/jipb.12501.
Xu R, Yang Y, Qin R, Li H, Qiu C, Li L, et al. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. J Genet Genom. 2016;43:529–32. https://doi.org/10.1016/j.jgg.2016.07.003.
Google Scholar
Hu Z, Lu S-J, Wang M-J, He H, Sun L, Wang H, et al. A novel QTL q TGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. Mol Plant. 2018;11:736–49. https://doi.org/10.1016/j.molp.2018.03.005.
CAS
Google Scholar
Shen L, Li J, Fu Y, Wang J, Hua Y, Jiao X, Yan C, Wang K. Orientation improvement of grain length and grain number in rice by using CRISPR/Cas9 system. Chin J Rice Sci. 2017. https://doi.org/10.16819/j.1001-7216.2017.7029.
Ji X, Li F, Yan Y, Sun HZ, Zhang J, Li JZ, et al. CRISPR/Cas9 system-based editing of phytochrome-interacting factor OsPIL15. Sci Agric Sin. 2017. https://doi.org/10.3864/j.issn.0578-1752.2017.15.002.
Shen L, Hua Y, Fu Y, Li J, Liu Q, Jiao X, et al. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Sci China Life Sci. 2017;60:506–15. https://doi.org/10.1007/s11427-017-9008-8.
CAS
Google Scholar
Lu K, Wu B, Wang J, Zhu W, Nie H, Qian J, et al. Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice. Plant Biotechnol J. 2018;50:1416. https://doi.org/10.1111/pbi.12907.
Google Scholar
Liao Y, Bai Q, Xu P, Wu T, Guo D, Peng Y, et al. Mutation in rice abscisic acid2 results in cell death, enhanced disease-resistance, altered seed dormancy and development. Front Plant Sci. 2018;9:1248. https://doi.org/10.3389/fpls.2018.00405.
Google Scholar
Li X, Zhou W, Ren Y, Tian X, Lv T, Wang Z, et al. High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing. J Genet Genom. 2017;44:175–8. https://doi.org/10.1016/j.jgg.2017.02.001.
Google Scholar
Lee S-K, Eom J-S, Hwang S-K, Shin D, An G, Okita TW, Jeon J-S. Plastidic phosphoglucomutase and ADP-glucose pyrophosphorylase mutants impair starch synthesis in rice pollen grains and cause male sterility. J Exp Bot. 2016;67:5557–69. https://doi.org/10.1093/jxb/erw324.
CAS
Google Scholar
Li Q, Zhang D, Chen M, Liang W, Wei J, Qi Y, Yuan Z. Development of japonica photo-sensitive genic male sterile rice lines by editing carbon starved anther using CRISPR/Cas9. J Genet Genom. 2016;43:415–9. https://doi.org/10.1016/j.jgg.2016.04.011.
Google Scholar
Xie Y, Niu B, Long Y, Li G, Tang J, Zhang Y, et al. Suppression or knockout of SaF/SaM overcomes the Sa-mediated hybrid male sterility in rice. J Integr Plant Biol. 2017;59:669–79. https://doi.org/10.1111/jipb.12564.
CAS
Google Scholar
Zhou H, He M, Li J, Chen L, Huang Z, Zheng S, et al. Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Sci Rep. 2016;6:1–12. https://doi.org/10.1038/srep37395.
Google Scholar
Zou T, He Z, Qu L, Liu M, Zeng J, Liang Y, et al. Knockout of OsACOS12 caused male sterility in rice. Mol Breed. 2017;37:437. https://doi.org/10.1007/s11032-017-0722-9.
Google Scholar
Zou T, Xiao Q, Li W, Luo T, Yuan G, He Z, et al. OsLAP6/OsPKS1, an orthologue of Arabidopsis PKSA/LAP6, is critical for proper pollen exine formation. Rice. 2017;10:615. https://doi.org/10.1186/s12284-017-0191-0.
Google Scholar
Liu L, Zheng C, Kuang B, Wei L, Yan L, Wang T. Receptor-like kinase RUPO interacts with potassium transporters to regulate pollen tube growth and integrity in rice. PLoS Genet. 2016;12:e1006085. https://doi.org/10.1371/journal.pgen.1006085.
Google Scholar
Ma L, Zhu F, Li Z, Zhang J, Li X, Dong J, Wang T. TALEN-based mutagenesis of lipoxygenase LOX3 enhances the storage tolerance of rice (Oryza sativa) seeds. PLoS ONE. 2015;10:e0143877. https://doi.org/10.1371/journal.pone.0143877.
Google Scholar
Qian W, Wu C, Fu Y, Hu G, He Z, Liu W. Novel rice mutants overexpressing the brassinosteroid catabolic gene CYP734A4. Plant Mol Biol. 2017;93:197–208. https://doi.org/10.1007/s11103-016-0558-4.
CAS
Google Scholar
Yuan J, Chen S, Jiao W, Wang L, Wang L, Ye W, et al. Both maternally and paternally imprinted genes regulate seed development in rice. New Phytol. 2017;216:373–87. https://doi.org/10.1111/nph.14510.
CAS
Google Scholar
Lu Y, Zhu J-K. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant. 2017;10:523–5. https://doi.org/10.1016/j.molp.2016.11.013.
CAS
Google Scholar
Wang Y, Geng L, Yuan M, Wei J, Jin C, Li M, et al. Deletion of a target gene in Indica rice via CRISPR/Cas9. Plant Cell Rep. 2017;36:1333–43. https://doi.org/10.1007/s00299-017-2158-4.
CAS
Google Scholar
Huang Y, Guo Y, Liu Y, Zhang F, Wang Z, Wang H, et al. 9-cis-Epoxycarotenoid dioxygenase 3 regulates plant growth and enhances multi-abiotic stress tolerance in rice. Front Plant Sci. 2018;9:1248. https://doi.org/10.3389/fpls.2018.00162.
Google Scholar
Cai Y, Chen L, Liu X, Guo C, Sun S, Wu C, et al. CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnol J. 2017. https://doi.org/10.1111/pbi.12758.
Liu Y, Merrick P, Zhang Z, Ji C, Yang B, Fei S-Z. Targeted mutagenesis in tetraploid switchgrass (Panicum virgatum L.) using CRISPR/Cas9. Plant Biotechnol J. 2018;16:381–93. https://doi.org/10.1111/pbi.12778.
CAS
Google Scholar
Ito Y, Nishizawa-Yokoi A, Endo M, Mikami M, Toki S. CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem Biophys Res Commun. 2015;467:76–82. https://doi.org/10.1016/j.bbrc.2015.09.117.
CAS
Google Scholar
Lor VS, Starker CG, Voytas DF, Weiss D, Olszewski NE. Targeted mutagenesis of the tomato PROCERA gene using transcription activator-like effector nucleases. Plant Physiol. 2014;166:1288–91. https://doi.org/10.1104/pp.114.247593.
Google Scholar
Soyk S, Müller NA, Park SJ, Schmalenbach I, Jiang K, Hayama R, et al. Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat Genet. 2017;49:162–8. https://doi.org/10.1038/ng.3733.
CAS
Google Scholar
United States Department of Agriculture (USDA). 2018. https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/18-051-01_air_response_signed.pdf. Accessed 25 Aug 2018.
Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB. Engineering quantitative trait variation for crop improvement by genome editing. Cell. 2017;171(470–480):e8. https://doi.org/10.1016/j.cell.2017.08.030.
Google Scholar
Filler Hayut S, Melamed Bessudo C, Levy AA. Targeted recombination between homologous chromosomes for precise breeding in tomato. Nat Commun. 2017;8:15605. https://doi.org/10.1038/ncomms15605.
CAS
Google Scholar
Dahan-Meir T, Filler-Hayut S, Melamed-Bessudo C, Bocobza S, Czosnek H, Aharoni A, Levy AA. Efficient in planta gene targeting in tomato using geminiviral replicons and the CRISPR/Cas9 system. Plant J. 2018;95:5–16. https://doi.org/10.1111/tpj.13932.
CAS
Google Scholar
Deng L, Wang H, Sun C, Li Q, Jiang H, Du M, et al. Efficient generation of pink-fruited tomatoes using CRISPR/Cas9 system. J Genet Genom. 2018;45:51–4. https://doi.org/10.1016/j.jgg.2017.10.002.
Google Scholar
Wang W, Pan Q, He F, Akhunova A, Chao S, Trick H, Akhunov E. Transgenerational CRISPR–Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J. 2018;1:65–74. https://doi.org/10.1089/crispr.2017.0010.
CAS
Google Scholar
Zhang Y, Li D, Zhang D, Zhao X, Cao X, Dong L, et al. Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits. Plant J. 2018;94:857–66. https://doi.org/10.1111/tpj.13903.
CAS
Google Scholar
Zhou J, Wang G, Liu Z. Efficient genome editing of wild strawberry genes, vector development and validation. Plant Biotechnol J. 2018;166:1292. https://doi.org/10.1111/pbi.12922.
Google Scholar
United States Department of Agriculture (USDA). 2017. https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/17-038-02_air_inquiry_cbidel.pdf. Accessed 25 Aug 2018.
Ozseyhan ME, Kang J, Mu X, Lu C. Mutagenesis of the FAE1 genes significantly changes fatty acid composition in seeds of Camelina sativa. Plant Physiol Biochem. 2018;123:1–7. https://doi.org/10.1016/j.plaphy.2017.11.021.
CAS
Google Scholar
Jiang WZ, Henry IM, Lynagh PG, Comai L, Cahoon EB, Weeks DP. Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol J. 2017;15:648–57. https://doi.org/10.1111/pbi.12663.
CAS
Google Scholar
Morineau C, Bellec Y, Tellier F, Gissot L, Kelemen Z, Nogué F, Faure J-D. Selective gene dosage by CRISPR–Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnol J. 2017;15:729–39. https://doi.org/10.1111/pbi.12671.
CAS
Google Scholar
Aznar-Moreno JA, Durrett TP. Simultaneous targeting of multiple gene homeologs to alter seed oil production in Camelina sativa. Plant Cell Physiol. 2017;58:1260–7. https://doi.org/10.1093/pcp/pcx058.
CAS
Google Scholar
Okuzaki A, Ogawa T, Koizuka C, Kaneko K, Inaba M, Imamura J, Koizuka N. CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiol Biochem. 2018. https://doi.org/10.1016/j.plaphy.2018.04.025.
United States Department of Agriculture (USDA). 2015. https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/15-352-01_air_inquiry_cbidel.pdf. Accessed 25 Aug 2018.
Qi X, Dong L, Liu C, Mao L, Liu F, Zhang X, et al. Systematic identification of endogenous RNA polymerase III promoters for efficient RNA guide-based genome editing technologies in maize. Crop J. 2018;6:314–20. https://doi.org/10.1016/j.cj.2018.02.005.
Google Scholar
United States Department of Agriculture (USDA). 2015. https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/15-078-02_air_inquiry.pdf. Accessed 25 Aug 2018.
United States Department of Agriculture (USDA). 2010. https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/DOW_Email_%20to_Susan_%20Kohler_032010.pdf. Accessed 25 Aug 2018.
Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature. 2009;459:437–41. https://doi.org/10.1038/nature07992.
CAS
Google Scholar
United States Department of Agriculture (USDA). 2015. https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/15-321-01_air_inquiry.pdf. Accessed 25 Aug 2018.
Alagoz Y, Gurkok T, Zhang B, Unver T. Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR–Cas 9 genome editing technology. Sci Rep. 2016;6:30910–8. https://doi.org/10.1038/srep30910.
CAS
Google Scholar
Wen S, Liu H, Li X, Chen X, Hong Y, Li H, et al. TALEN-mediated targeted mutagenesis of fatty acid desaturase 2 (FAD2) in peanut (Arachis hypogaea L.) promotes the accumulation of oleic acid. Plant Mol Biol. 2018;97:177–85. https://doi.org/10.1007/s11103-018-0731-z.
CAS
Google Scholar
United States Department of Agriculture (USDA). 2016. https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/16-090-01_air_inquiry_cbidel.pdf. Accessed 25 Aug 2018.
United States Department of Agriculture (USDA). 2016. https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/16-320-01_air_inquiry.pdf. Accessed 25 Aug 2018.
Sawai S, Ohyama K, Yasumoto S, Seki H, Sakuma T, Yamamoto T, et al. Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell. 2014;26:3763–74. https://doi.org/10.1105/tpc.114.130096.
CAS
Google Scholar
Nakayasu M, Akiyama R, Lee HJ, Osakabe K, Osakabe Y, Watanabe B, et al. Generation of α-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. Plant Physiol Biochem. 2018. https://doi.org/10.1016/j.plaphy.2018.04.026.
Shan Q, Zhang Y, Chen K, Zhang K, Gao C. Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol J. 2015;13:791–800. https://doi.org/10.1111/pbi.12312.
CAS
Google Scholar
Sun Y, Jiao G, Liu Z, Zhang X, Li J, Guo X, et al. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci. 2017;8:1–15. https://doi.org/10.3389/fpls.2017.00298.
Google Scholar
Ye Y, Li P, Xu T, Zeng L, Cheng D, Yang M, et al. OsPT4 contributes to arsenate uptake and transport in rice. Front Plant Sci. 2017;8:311. https://doi.org/10.3389/fpls.2017.02197.
Google Scholar
Wang F-Z, Chen M-X, Yu L-J, Xie L-J, Yuan L-B, Qi H, et al. OsARM1, an R2R3 MYB transcription factor, is involved in regulation of the response to arsenic stress in rice. Front Plant Sci. 2017;8:1868. https://doi.org/10.3389/fpls.2017.01868.
Google Scholar
Abe K, Araki E, Suzuki Y, Toki S, Saika H. Production of high oleic/low linoleic rice by genome editing. Plant Physiol Biochem. 2018. https://doi.org/10.1016/j.plaphy.2018.04.033.
Nieves-Cordones M, Mohamed S, Tanoi K, Kobayashi NI, Takagi K, Vernet A, et al. Production of low-Cs+ rice plants by inactivation of the K+ transporter OsHAK1 with the CRISPR–Cas system. Plant J. 2017;92:43–56. https://doi.org/10.1111/tpj.13632.
CAS
Google Scholar
Tang L, Mao B, Li Y, Lv Q, Zhang L, Chen C, et al. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep. 2017;7:14438. https://doi.org/10.1038/s41598-017-14832-9.
Google Scholar
Zhang J, Zhang H, Botella JR, Zhu J-K. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. J Integr Plant Biol. 2018;60:369–75. https://doi.org/10.1111/jipb.12620.
CAS
Google Scholar
Zhou Z, Tan H, Li Q, Chen J, Gao S, Wang Y, et al. CRISPR/Cas9-mediated efficient targeted mutagenesis of RAS in Salvia miltiorrhiza. Phytochemistry. 2018;148:63–70. https://doi.org/10.1016/j.phytochem.2018.01.015.
Google Scholar
United States Department of Agriculture (USDA). 2014. https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/cellectis_air_fad2k0_soy_cbidel.pdf. Accessed 25 Aug 2018.
United States Department of Agriculture (USDA). 2015. https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/15-071-01air.pdf. Accessed 25 Aug 2018.
Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, et al. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J. 2014;12:934–40. https://doi.org/10.1111/pbi.12201.
CAS
Google Scholar
Klap C, Yeshayahou E, Bolger AM, Arazi T, Gupta SK, Shabtai S, et al. Tomato facultative parthenocarpy results from SlAGAMOUS-LIKE 6 loss of function. Plant Biotechnol J. 2017;15:634–47. https://doi.org/10.1111/pbi.12662.
CAS
Google Scholar
Ueta R, Abe C, Watanabe T, Sugano SS, Ishihara R, Ezura H, et al. Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Sci Rep. 2017;7:507. https://doi.org/10.1038/s41598-017-00501-4.
Google Scholar
Lee J, Nonaka S, Takayama M, Ezura H. Utilization of a genome-edited tomato (Solanum lycopersicum) with high gamma aminobutyric acid content in hybrid breeding. J Agric Food Chem. 2018;66:963–71. https://doi.org/10.1021/acs.jafc.7b05171.
CAS
Google Scholar
Nonaka S, Arai C, Takayama M, Matsukura C, Ezura H. Efficient increase of ɣ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Sci Rep. 2017;7:7057. https://doi.org/10.1038/s41598-017-06400-y.
CAS
Google Scholar
Li X, Wang Y, Chen S, Tian H, Fu D, Zhu B, et al. Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Front Plant Sci. 2018;9:179. https://doi.org/10.3389/fpls.2018.00559.
Google Scholar
Yu Q-H, Wang B, Li N, Tang Y, Yang S, Yang T, et al. CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate long-shelf life tomato lines. Sci Rep. 2017;7:818. https://doi.org/10.1038/s41598-017-12262-1.
Google Scholar
United States Department of Agriculture (USDA). 2017. https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/17-038-01_air_inquiry_cbidel.pdf. Accessed 25 Aug 2018.
Sánchez-León S, Gil-Humanes J, Ozuna CV, Giménez MJ, Sousa C, Voytas DF, Barro F. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J. 2017. https://doi.org/10.1111/pbi.12837.
Fister AS, Landherr L, Maximova SN, Guiltinan MJ. Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Front Plant Sci. 2018;9:47. https://doi.org/10.3389/fpls.2018.00268.
Google Scholar
Jia H, Orbovic V, Jones JB, Wang N. Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4:dCsLOB1.3 infection. Plant Biotechnol J. 2016;14:1291–301. https://doi.org/10.1111/pbi.12495.
CAS
Google Scholar
Jia H, Zhang Y, Orbović V, Xu J, White FF, Jones JB, Wang N. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol J. 2017;15:817–23. https://doi.org/10.1111/pbi.12677.
CAS
Google Scholar
Wang X, Tu M, Wang D, Liu J, Li Y, Li Z, et al. CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnol J. 2018;16:844–55. https://doi.org/10.1111/pbi.12832.
CAS
Google Scholar
United States Department of Agriculture (USDA). 2017. https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/17-076-01_air_inquiry_cbidel.pdf. Accessed 25 Aug 2018.
Peng A, Chen S, Lei T, Xu L, He Y, Wu L, et al. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol J. 2017;15:1509–19. https://doi.org/10.1111/pbi.12733.
CAS
Google Scholar
Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, et al. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE. 2016;11:e0154027. https://doi.org/10.1371/journal.pone.0154027.
Google Scholar
Zhou J, Peng Z, Long J, Sosso D, Liu B, Eom J-S, et al. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J. 2015;82:632–43. https://doi.org/10.1111/tpj.12838.
CAS
Google Scholar
Blanvillain-Baufumé S, Reschke M, Solé M, Auguy F, Doucoure H, Szurek B, et al. Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors. Plant Biotechnol J. 2017;15:306–17. https://doi.org/10.1111/pbi.12613.
Google Scholar
Li T, Liu B, Spalding MH, Weeks DP, Yang B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol. 2012;30:390–2. https://doi.org/10.1038/nbt.2199.
CAS
Google Scholar
Wang J, Tian D, Gu K, Yang X, Wang L, Zeng X, Yin Z. Induction of Xa10-like genes in rice cultivar nipponbare confers disease resistance to rice bacterial blight. Mol Plant Microbe Interact. 2017;30:466–77. https://doi.org/10.1094/MPMI-11-16-0229-R.
CAS
Google Scholar
Xie C, Zhang G, Zhang Y, Song X, Guo H, Chen X, Fang R. SRWD1, a novel target gene of DELLA and WRKY proteins, participates in the development and immune response of rice (Oryza sativa L.). Sci Bull. 2017;62:1639–48. https://doi.org/10.1016/j.scib.2017.12.002.
CAS
Google Scholar
Zhou X, Liao H, Chern M, Yin J, Chen Y, Wang J, et al. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. Proc Natl Acad Sci USA. 2018;115:3174–9. https://doi.org/10.1073/pnas.1705927115.
CAS
Google Scholar
United States Department of Agriculture (USDA). 2014. https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/air_isu_ting_rice.pdf. Accessed 25 Aug 2018.
Cai L, Cao Y, Xu Z, Ma W, Zakria M, Zou L, et al. A transcription activator-like effector Tal7 of Xanthomonas oryzae pv. oryzicola activates rice gene Os09g29100 to suppress rice immunity. Sci Rep. 2017;7:5089. https://doi.org/10.1038/s41598-017-04800-8.
Google Scholar
Macovei A, Sevilla NR, Cantos C, Jonson GB, Slamet-Loedin I, Čermák T, et al. Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnol J. 2018;47:417. https://doi.org/10.1111/pbi.12927.
Google Scholar
Nekrasov V, Wang C, Win J, Lanz C, Weigel D, Kamoun S. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci Rep. 2017;7:482. https://doi.org/10.1038/s41598-017-00578-x.
Google Scholar
Mahfouz M, Tashkandi M, Ali Z, Aljedaani F, Shami A. Engineering resistance against tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. 2017. https://doi.org/10.1101/237735.
Toledo Thomazella DP de, Brail Q, Dahlbeck D, Staskawicz BJ. CRISPR–Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. 2016:1–23. https://doi.org/10.1101/064824.
Zhang Y, Bai Y, Wu G, Zou S, Chen Y, Gao C, Tang D. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J. 2017;91:714–24. https://doi.org/10.1111/tpj.13599.
CAS
Google Scholar
United States Department of Agriculture (USDA). 2015. https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/15-238-01_air_inquiry_cbidel.pdf. Accessed 25 Aug 2018.
Ruiter R, van den Brande I, Stals E, Delauré S, Cornelissen M, D’Halluin K. Spontaneous mutation frequency in plants obscures the effect of chimeraplasty. Plant Mol Biol. 2003;53:675–89. https://doi.org/10.1023/b:plan.0000019111.96107.01.
CAS
Google Scholar
Hummel AW, Chauhan RD, Cermak T, Mutka AM, Vijayaraghavan A, Boyher A, et al. Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnol J. 2018;16:1275–82. https://doi.org/10.1111/pbi.12868.
CAS
Google Scholar
D’Halluin K, Vanderstraeten C, van Hulle J, Rosolowska J, van den Brande I, Pennewaert A, et al. Targeted molecular trait stacking in cotton through targeted double-strand break induction. Plant Biotechnol J. 2013;11:933–41. https://doi.org/10.1111/pbi.12085.
Google Scholar
Sauer NJ, Narváez-Vásquez J, Mozoruk J, Miller RB, Warburg ZJ, Woodward MJ, et al. Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiol. 2016;170:1917–28. https://doi.org/10.1104/pp.15.01696.
CAS
Google Scholar
Ainley WM, Sastry-Dent L, Welter ME, Murray MG, Zeitler B, Amora R, et al. Trait stacking via targeted genome editing. Plant Biotechnol J. 2013;11:1126–34. https://doi.org/10.1111/pbi.12107.
CAS
Google Scholar
Zhu T, Peterson DJ, Tagliani L, Clair G, Baszczynski CL, Bowen B. Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides. Proc Natl Acad Sci. 1999;96:8768–73. https://doi.org/10.1073/pnas.96.15.8768.
CAS
Google Scholar
Zhu T, Mettenburg K, Peterson DJ, Tagliani L, Baszczynski CL. Engineering herbicide-resistant maize using chimeric RNA/DNA oligonucleotides. Nat Biotechnol. 2000;18:555–8. https://doi.org/10.1038/75435.
CAS
Google Scholar
Butler NM, Baltes NJ, Voytas DF, Douches DS. Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front Plant Sci. 2016;7:1–13. https://doi.org/10.3389/fpls.2016.01045.
Google Scholar
Li J, Meng X, Zong Y, Chen K, Zhang H, Liu J, et al. Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nat Plants. 2016;2:1–6. https://doi.org/10.1038/nplants.2016.139.
Google Scholar
Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, et al. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol Plant. 2016;9:628–31. https://doi.org/10.1016/j.molp.2016.01.001.
CAS
Google Scholar
Wang M, Liu Y, Zhang C, Liu J, Liu X, Wang L, et al. Gene editing by co-transformation of TALEN and chimeric RNA/DNA oligonucleotides on the rice OsEPSPS gene and the inheritance of mutations. PLoS ONE. 2015;10:e0122755. https://doi.org/10.1371/journal.pone.0122755.
Google Scholar
Okuzaki A, Toriyama K. Chimeric RNA/DNA oligonucleotide-directed gene targeting in rice. Plant Cell Rep. 2004;22:509–12. https://doi.org/10.1007/s00299-003-0698-2.
CAS
Google Scholar
Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H, et al. Targeted base editing in rice and tomato using a CRISPR–Cas9 cytidine deaminase fusion. Nat Biotechnol. 2017;35:441–3. https://doi.org/10.1038/nbt.3833.
CAS
Google Scholar
Shimatani Z, Fujikura U, Ishii H, Matsui Y, Suzuki M, Ueke Y, et al. Inheritance of co-edited genes by CRISPR-based targeted nucleotide substitutions in rice. Plant Physiol Biochem. 2018. https://doi.org/10.1016/j.plaphy.2018.04.028.
Butt H, Eid A, Ali Z, Atia MAM, Mokhtar MM, Hassan N, et al. Efficient CRISPR/Cas9-mediated genome editing using a chimeric single-guide RNA molecule. Front Plant Sci. 2017;8:1441. https://doi.org/10.3389/fpls.2017.01441.
Google Scholar
Li Z, Liu Z-B, Xing A, Moon BP, Koellhoffer JP, Huang L, et al. Cas9-guide RNA directed genome editing in soybean. Plant Physiol. 2015;169:960–70. https://doi.org/10.1104/pp.15.00783.
Google Scholar
Chilcoat D, Liu Z-B, Sander J. Use of CRISPR/Cas9 for crop improvement in maize and soybean. Prog Mol Biol Transl Sci. 2017;149:27–46. https://doi.org/10.1016/bs.pmbts.2017.04.005.
CAS
Google Scholar
United States Department of Agriculture (USDA). 2018. https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/18-036-01_a1_air_inquiry_cbidel.pdf. Accessed 25 Aug 2018.
Zhou X, Jacobs TB, Xue L-J, Harding SA, Tsai C-J. Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate:CoA ligase specificity and redundancy. New Phytol. 2015;208:298–301. https://doi.org/10.1111/nph.13470.
CAS
Google Scholar
Andersson M, Turesson H, Nicolia A, Fält A-S, Samuelsson M, Hofvander P. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR–Cas9 expression in protoplasts. Plant Cell Rep. 2017;36:117–28. https://doi.org/10.1007/s00299-016-2062-3.
CAS
Google Scholar
Jung JH, Altpeter F. TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Mol Biol. 2016;92:131–42. https://doi.org/10.1007/s11103-016-0499-y.
CAS
Google Scholar
Kannan B, Jung JH, Moxley GW, Lee S-M, Altpeter F. TALEN-mediated targeted mutagenesis of more than 100 COMT copies/alleles in highly polyploid sugarcane improves saccharification efficiency without compromising biomass yield. Plant Biotechnol J. 2018;16:856–66. https://doi.org/10.1111/pbi.12833.
CAS
Google Scholar
Park J-J, Yoo CG, Flanagan A, Pu Y, Debnath S, Ge Y, et al. Defined tetra-allelic gene disruption of the 4-coumarate: coenzyme A ligase 1 (Pv4CL1) gene by CRISPR/Cas9 in switchgrass results in lignin reduction and improved sugar release. Biotechnol Biofuels. 2017;10:284. https://doi.org/10.1186/s13068-017-0972-0.
Google Scholar
United States Department of Agriculture (USDA). 2011. https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/17-126-01_air_inquiry.pdf. Accessed 25 Aug 2018.
Njuguna E, Coussens G, Aesaert S, Neyt P, Anami S, van Lijsebettens M. Modulation of energy homeostasis in maize and Arabidopsis to develop lines tolerant to drought, genotoxic and oxidative stresses. Afrika Focus. 2018. https://doi.org/10.21825/af.v30i2.8080.
United States Department of Agriculture (USDA). 2017. https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/17-219-01_air_inquiry.pdf. Accessed 25 Aug 2018.
Kim D, Alptekin B, Budak H. CRISPR/Cas9 genome editing in wheat. Funct Integr Genom. 2018;18:31–41. https://doi.org/10.1007/s10142-017-0572-x.
CAS
Google Scholar
Meng X, Hu X, Liu Q, Song X, Gao C, Li J, Wang K. Robust genome editing of CRISPR–Cas9 at NAG PAMs in rice. Sci China Life Sci. 2018;61:122–5. https://doi.org/10.1007/s11427-017-9247-9.
CAS
Google Scholar
Ali Z, Abul-faraj A, Piatek M, Mahfouz MM. Activity and specificity of TRV-mediated gene editing in plants. Plant Signal Behav. 2015;10:e1044191. https://doi.org/10.1080/15592324.2015.1044191.
Google Scholar
Shen C, Que Z, Xia Y, Tang N, Li D, He R, Cao M. Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice. J Plant Biol. 2017;60:539–47. https://doi.org/10.1007/s12374-016-0400-1.
CAS
Google Scholar
Tian S, Jiang L, Gao Q, Zhang J, Zong M, Zhang H, et al. Efficient CRISPR/Cas9-based gene knockout in watermelon. Plant Cell Rep. 2017;36:399–406. https://doi.org/10.1007/s00299-016-2089-5.
CAS
Google Scholar
Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J. 2014;12:797–807. https://doi.org/10.1111/pbi.12200.
CAS
Google Scholar
Forner J, Pfeiffer A, Langenecker T, Manavella PA, Manavella P, Lohmann JU. Germline-transmitted genome editing in Arabidopsis thaliana using TAL-effector-nucleases. PLoS ONE. 2015;10:e0121056. https://doi.org/10.1371/journal.pone.0121056.
Google Scholar
Ren B, Yan F, Kuang Y, Li N, Zhang D, Lin H, Zhou H. Specificity and inheritance of rBE3 and rBE4 endonuclease-induced gene modifications in rice. Chin J Biotechnol 2007;33(10):1776–85.
Google Scholar
Khandagale K, Nadaf A. Genome editing for targeted improvement of plants. Plant Biotechnol Rep. 2016;10:327–43. https://doi.org/10.1007/s11816-016-0417-4.
Google Scholar